• Что можно приготовить из кальмаров: быстро и вкусно

    9.1 Задачи при проектировании технологических процессов

    9.2 Порядок разработки технологических процессов механической обработки

    Проектирование технологических процессов – важный элемент процесса производства. От степени рациональности технологического процесса зависят качество и стоимость продукции.

    При проектировании технологических процессов должны быть решены две основные задачи:

    – технологический процесс для заданных условий и масштаба производства должен обеспечить надежное (без брака) осуществление всех требований рабочего чертежа и технических условий на изделие:

    – технологический процесс должен быть максимально экономичным (с минимальными затратами труда и средств производства).

    При проектировании технологических процессов необходимо учитывать современные направления в технологии машиностроения. Для выбора наиболее экономичного варианта технологического процесса часто приходится составлять два-три конкурирующих варианта, которые сравнивают между собой. Обычно предпочтение при прочих равных условиях отдают наиболее экономичному варианту.

    Степень проработки технологического процесса . В зависимости от масштаба производства технологический процесс бывает разработан более или менее подробно. В единичном и мелкосерийном производствах технологический разрабатывают не подробно. В этих условиях составляют так называемую маршрутную технологию («технологический маршрут») – перечень операций, и на каждую операцию определяют штучное время и разряд работ. Однако при обработке сложных и дорогих деталей даже в условиях единичного производства технологические процессы разрабатывают более подробно.

    В серийном производстве представляют маршрутно-операционное описание технологического процесса. На наиболее сложные операции составляют операционные процессы (с режимами резания), а на простые – технологический маршрут. Для сложных и ответственных деталей (корпуса редукторов, коленчатые валы и др.) разрабатывают операционную технологию (характерную для массового производства).

    При крупносерийном и массовом производстве составляют операционную технологию, которая более подробна, чем маршрутно-операционная.

    Порядок разработки технологических процессов механической обработки. Проектирование технологических процессов состоит из следующих взаимосвязанных этапов: анализа исходных данных; технологического контроля чертежа детали; выбора типа производства; выбора заготовки; выбора баз; установления маршрута обработки отдельных поверхностей детали; проектирования технологического маршрута изготовления детали с выбором типа оборудования; расчета припусков, расчета промежуточных и исходных размеров заготовки; построения операций и выбора технологической оснастки; расчета режимов обработки; технического нормирования операций; оценки технико-экономических показателей процесса, оформления технологической документации.



    Анализ исходных данных . К числу исходных данных для проектирования процесса механической обработки деталей относятся: рабочие чертежи деталей и технические условия на их изготовление; данные о годовой производственной программе; данные о заготовках, из которых должны изготавливаться детали; сведения о специфических условиях данного производства (действующий, реконструируемый, новый завод). Для нового завода можно проектировать технологический процесс с использованием самого новейшего оборудования. Для действующего и реконструируемого завода нужно располагать сведениями об имеющемся оборудовании.

    При проектировании технологических процессов необходим также ряд справочных и нормативно-технических материалов (по припускам и допускам, по оборудованию – паспорта, каталоги и др., по режущим, измерительным и вспомогательным инструментам, режимам резания, вспомогательному времени, нормативная документация по технике безопасности, бланки технологической документации (маршрутные карты, технологические карты и карты операционного контроля).

    Технологический контроль чертежа детали . Проектирование технологических процессов механической обработки начинается с тщательного изучения чертежа и технических условий на готовую деталь. Во многих случаях требуется также ознакомиться с чертежами узла и изделия, в которые входит обрабатываемая деталь, с условиями работы детали, программой выпуска деталей, а также с производственными условиями, в которых намечено выполнение процесса (оборудование, транспортные средства и др.)

    В процессе анализа исходных данных технолог осуществляет технологический контроль чертежа и технических условий. При этом следует выявить пути улучшения технологичности конструкции детали. Это позволит уменьшить трудоемкость изготовления детали, снизить себестоимость ее изготовления (стандартный инструмент, соотношение точности и шероховатости и др.).

    Выбор типа производства. Тип производства выбирают, исходя из производственной программы выпуска путем расчета такта выпуска деталей. Размер производственной программы определяют исходя из трудоемкости операций обработки, трудоемкости наладки оборудования на основных операциях, затрат незавершенного производства и других экономических и организационных соображений.

    Выбор исходной заготовки . На выбор заготовки и метода ее получения значительное влияние оказывают характеристика материала, из которого должна изготавливаться деталь, ее конструктивные формы и размер, программа выпуска.

    Метод получения заготовки должен обеспечить наименьшую себестоимость изготовления заготовки.

    Выбор технологических баз является основой построения технологического процесса изготовления детали и имеет большое значение для обеспечения требуемой точности обработки экономичности процесса. Назначая технологические базы для первой и последующих операций обработки, следует руководствоваться следующими общими соображениями:

    – установочная и направляющая базы должны иметь необходимую протяженность для обеспечения устойчивого положения заготовки при ее обработке;

    – обрабатываемая заготовка должна иметь минимальные деформации от действия силы резания, зажимной силы и от действия собственной массы;

    – в качестве технологической базы следует принимать поверхности, обеспечивающие наименьшую погрешность установки и исключающие погрешность базирования.

    На первой операции должны быть обработаны те поверхности, которые будут приняты за технологическую базу для последующих операций.

    Так как технологической базой на первой операции будут черновые (не обработанные) поверхности, следует выбирать те поверхности, которые допускают по возможности равномерное снятие припусков и достаточно точное взаимное расположение обрабатываемых и не подлежащих обработке поверхностей. Если все поверхности детали подвергают механической обработке, то в качестве базы на первой операции следует выбирать поверхности с наименьшим припуском, чтобы при последующей обработке не получилось брака из-за недостатка припуска.

    На второй и последующих операциях технологические базы должны быть возможно точными по геометрической форме и по шероховатости поверхности.

    Рекомендуется, если это возможно, соблюдать принцип совмещения баз, т.е. в качестве технологической базы принимать поверхности, которые будут одновременно измерительной базой. Если технологическая база не совпадает с измерительной то возникает погрешность базирования. Следует иметь в виду, что лучшие результаты по точности будут достигнуты в том случае, если технологической и измерительной базой служит конструкторская база.

    Необходимо придерживаться принципа постоянства базы на основных операциях обработки, т.е. использовать в качестве технологической базы одни и те же поверхности. С целью соблюдения принципа постоянства баз в ряде случаев на деталях создают искусственные технологические базы, не имеющие конструктивного назначения (центровые гнезда валов, специально обработанные отверстия в корпусных деталях при базировании их на штифты и др.).

    Если по условиям обработки не удается выдержать принцип постоянства базы, то в качестве новой базы принимают обработанную поверхность, по возможности наиболее точную и обеспечивающую жесткость установки заготовки.

    Установления маршрута обработки отдельных поверхностей детали. На начальной стадии разработки технологического процесса составляют перечень технологических переходов, которые могут быть применены для достижения конечной точности и шероховатости поверхности, проставленных на рабочем чертеже детали. Между рабочим чертежом и технологическим процессом изготовления детали существуют тесные связи. Они обусловлены тем, что каждому методу обработки соответствуют определенные достижимые точность получаемого размера и шероховатость поверхности. Поэтому необходимый метод окончательной обработки поверхности подсказывается рабочим чертежом детали.

    Выбор метода окончательной обработки облегчается использованием точностных характеристик различных технологических методов. Так как каждому методу обработки соответствует некоторое оптимальное значение припуска, а общий припуск обычно превышает значение, допускаемое для этого метода, то можно определить и методы предшествующей обработки. Например, при обработке шейки вала до диаметра 50h8 при использовании в качестве заготовки проката последовательность технологических переходов: 1) черновое точение, 2) чистовое точение, 3)шлифование. В данном случае переход чернового точения необходим для приближения формы и размеров заготовки к форме и размерам детали.

    Определив первый и окончательный переходы, устанавливают необходимость промежуточных переходов. Например, недопустимо при обработке отверстия по 7-му квалитету точности после первого перехода (чернового растачивания отверстия) сразу применять чистовое развертывание, так как точность и качество поверхности после чернового растачивания не обеспечат качественного выполнения чистового развертывания.

    Определение последовательности технологических переходов при обработке отдельных поверхностей позволяет выявить необходимые этапы обработки (черновая, чистовая и отделочная) и является базой для формирования технологического маршрута изготовления деталей и отдельных операций.

    Проектирование технологического маршрута изготовления детали с выбором типа оборудования. На этапе разработки технологического маршрута припуски и режимы обработки не рассчитывают, поэтому рациональный маршрут выбирают с использованием справочных данных и руководящих материалов по типовым и групповым методам обработки.

    Технологические маршруты весьма разнообразны и зависят от конфигурации детали, ее размеров, требуемой точности, программы выпуска, однако при проектировании маршрута следует руководствоваться некоторыми общими соображениями. С методической точки зрения эта работа может быть представлена следующей примерной схемой.

    Сначала выявляют необходимость расчленения процесса изготовления детали на операции черновой, чистовой и отделочной обработки. Эту работу выполняют с использованием разработок по установлению маршрута обработки различных поверхностей данной детали.

    Операцию черновой обработки целесообразно отделить от чистовой, чтобы уменьшить влияние деформации заготовки после черновой обработки. Однако если заготовка жесткая, а обрабатываемые поверхности незначительны по длине, то такое расчленение не обязательно.

    Отделочная обработка, как правило, выполняется на конечной стадии процесса, Но от этого положения в отдельных случаях приходится отступать.

    При формировании операций следует учесть, что определенная группа поверхностей потребует обработки с одной установки. К таким поверхностям относятся соосные поверхности вращения и прилегающие к ним торцовые поверхности, а также плоские поверхности, обрабатываемые в несколько позиций.

    В самостоятельные операции выделяются обработка зубьев колес, нарезание шлицев, обработка пазов, сверление отверстий с применением многошпиндельных головок и др.

    При формировании операций следует иметь в виду следующее:

    – на первой операции необходимо обрабатывать те поверхности, которые будут использованы в качестве установочных баз на второй, а возможно и на последующих операциях механической обработки;

    – наличие термической или химико-термической обработки.

    При формировании технологического маршрута устанавливается тип применяемого оборудования. Станок выбирают по паспортам, каталогам, по фактическому наличию в соответствии с характером обработки, требованиями к точности и шероховатости поверхности на данной операции, размерами обрабатываемой детали, масштабом производства.

    Размеры станка должны соответствовать размерам обрабатываемой детали. Необходимо стремиться к максимально эффективному использованию станка по мощности и времени, а для многопозиционных – позиций и суппортов. При выборе станка важным фактором является его стоимость и себестоимость обработки на нем детали.

    В единичном производстве применяют универсальные станки, серийном – специализированные, а в массовом – специальные (автоматы, полуавтоматы, агрегатные и др.)

    Выполненная наметка технологического маршрута оформляется в виде операционных эскизов заготовок с указанием схемы их базирования и с выделением жирными линиями обрабатываемых поверхностей.

    В маршрут технологического процесса включают опущенные второстепенные операции (обработку крепежных отверстий, снятие фасок, зачистку заусенцев, промывку и др.).

    Место термической операции в технологическом маршруте . В процессе изготовления детали операции термической обработки должны быть увязаны с операциями механической обработки. Различают предварительную, промежуточную и окончательную термическую обработку.

    Предварительная ТО – осуществляется до выполнения операций механической обработки и заключается в отжиге, нормализации или улучшении заготовок. Поковки из конструкционных материалов, отливки и сварные заготовки подвергают операции отжига, что позволяет резко снизить остаточные напряжения в материале и улучшить его обрабатываемость резанием. Если при изготовлении деталей из среднеуглеродистых сталей окончательная термическая обработка заключается в нормализации или улучшении, то эти операции выполняют перед механической обработкой. Улучшение осуществляют до твердости не выше НRC 40 (НВ 390), так как при более высокой твердости обработка лезвийным инструментом затруднительна. Промежуточная ТО – применяется после чернового резания и заключается в нормализации стальных деталей и в процессе старения отливок. Нормализации подвергают заготовки из малоуглеродистых сталей, в том числе из легированных малоуглеродистых сталей (20Х, 20ХН), с целью обеспечения лучшей обрабатываемости при чистовом резании или при обработке методом пластического деформирования (раскатка отверстий и др.). Окончательная ТО – осуществляется в виде общей закалки детали или поверхностной. Если окончательная термическая обработка заключается в общей закалке детали до твердости выше НRC 40, то эту обработку ведут после чистовой обработки до шлифования. При необходимости цементации с последующей закалкой отдельных поверхностей детали применяют предварительное омеднение тех поверхностей, которые не подлежат цементации. Для предохранения поверхностей, подлежащих цементации от покрытия слоем меди, на эти поверхности наносят диэлектрики, чаще всего лак.

    Определение припусков . Общий припуск на обработку равен сумме промежуточных припусков. Общий припуск на обработку зависит от ряда факторов: размеров и конфигурации деталей, материала детали, точности детали, способа изготовления заготовки и др.

    Припуски следует назначать оптимальными с учетом конкретных условий обработки. Завышенные припуски приводят к излишнему расходу материала, возрастанию трудоемкости механической обработки, повышению эксплуатационных расходов станочной обработки (расход инструмента, электроэнергии и др.). Недостаточные припуски могут препятствовать исправлению погрешностей от предшествующей обработки и получению необходимой точности и шероховатости обработанной поверхности на выполняемом переходе.

    Значения припусков устанавливают по опытно-статистическим данным (нормативным таблицам) или расчетно-аналитическим методом.

    Расчетно-аналитический метод определения припусков применим для массового, крупно- и среднесерийного производства. В условиях единичного и мелкосерийного производства припуски устанавливают по нормативным таблицам.

    На основе расчета промежуточных припусков возможно определение предельных промежуточных и исходных размеров заготовки. Построение схемы начинают с наименьшего предельного размера после окончательной обработки. Наибольшие предельные размеры заготовок получают прибавлением к наименьшим диаметральным размерам значений технологических допусков (на чистовое точение, черновое точение и допуск на размер исходной заготовки).

    Наибольшие припуски получают путем вычитания наибольших предельных размеров заготовки на предшествующем и выполняемом переходам.

    Построение операций и выбор технологической оснастки. При проектировании технологической операции выполняют следующие взаимосвязанные работы: выбирают структуру построения операции механической обработки; уточняют содержание технологических переходов в операции; выбирают модель станка; выбирают технологическую оснастку; рассчитывают режимы обработки; рассчитывают норму времени; определяют разряд работы; обосновывают эффективность операции.

    Проектирование операции является многовариантной задачей, поэтому оценку возможных вариантов производят на основе технико-экономических расчетов. Проектируя отдельные операции, уточняют технологический маршрут изготовления детали и вносят в него необходимые коррективы.

    При разработке структуры операции механической обработки необходимо стремиться к достижению наиболее экономичного варианта. Важным фактором, влияющим на себестоимость продукции, является производительность процесса, оцениваемая трудоемкостью единицы продукции, т.е. штучным временем. Основными составляющими которого являются основное и вспомогательное время.

    В связи с эти при формировании операции с целью возможного перекрытия элементов основного и вспомогательного времени рассматривают схемы построения операций, отличающиеся:

    – числом одновременно устанавливаемых заготовок (одноместные и многоместные схемы);

    – числом участвующих в обработке инструментов – одноинструментная и многоинструментная обработка;

    – порядком использования инструментов – последовательная, параллельная, параллельно-последовательная обработка. Выбор определенной схемы построения операции в значительной мере зависит от программы выпуска и размеров детали. При единичном производстве деталей любых размеров наиболее рациональной будет одноместная одноинструментная последовательная обработка, а при серийном и массовом производстве некрупных деталей – многоместная многоинструментная параллельная или параллельно-последовательная обработка.

    Рисунок 29 - Примеры одноместной обработки

    На рисунке 29 показаны примеры одноинструментной обработки: а – одноинструментная последовательная обточка ступенчатого вала: б – последовательная обработка несколькими инструментами – сверление и зенкерование отверстия; в – параллельная многоинструментная обработка – сверление и одновременно наружное точение; г – параллельно-последовательная обработка – выполнение фрезерно-центровальной операции в две позиции: на 1-й позиции – одновременное фрезерование двух торцов, на 2-й позиции – одновременное центрование торцов.

    Выбор технологической оснастки . Одновременно с выбором оборудования выбирают приспособление, режущий и измерительный инструмент. При выборе технологической оснастки следует учитывать тип производства, вид изделия и программу его выпуска, характер намеченной технологии, возможность максимального применения имеющейся стандартной оснастки.

    Выбор приспособлений в значительной мере зависит от программы выпуска деталей:

    – в единичном и мелкосерийном производстве используют приспособления универсального типа (тиски, кулачковые патроны, делительные головки и др.);

    – в серийном – универсальные переналаживаемые приспособления и приспособления для групповой обработки;

    В массовом – высокопроизводительные специальные приспособления, позволяющие резко сократить время на установку и закрепление заготовки перед обработкой и на снятие заготовки по окончании выполнения операции.

    Выбор режущего инструмента производят с четом метода обработки, материала обрабатываемой детали, ее размера и конфигурации, требуемого качества обрабатываемой поверхности, программы выпуска деталей. При выборе режущегоинструмента в первую очередь ориентируются на применение стандартного инструмента, однако на отдельных операциях, особенно в условиях серийного и массового производства, предусматривают специальный инструмент. Для режущей части инструмента широко используют твердые сплавы, обеспечивающие высокие скорости резания и сверхтвердые. Твердые сплавы: однокарбидные (ВК) – для обработки чугунов и цветных сплавов; двухкарбидные (ТК) – для обработки вязких материалов; трехкарбидные (ТТК) – для скоростного резания, чистовая обработка. При отделочной обработке расширяется применение алмазов (натуральных и синтетических), особенно при обработке цветных металлов и сплавов (бронзы, латуни, алюминиевых сплавов и т.п.), для правки шлифовальных кругов.

    Выбор измерительных средств производят с учетом соответствия точностных характеристик инструмента точности выполняемого размера, вида измеряемой поверхности, а также масштаба выпуска деталей. В условиях единичного и мелкосерийного производства применяют в основном универсальные инструменты: штангенциркули, микрометры, нутромеры, универсальные индикаторные приборы и др. С увеличением масштаба выпуска деталей возрастает применение предельных калибров, шаблонов, различных контрольных приспособлений и автоматических средств контроля.

    Расчет режимов обработки. Режимы обработки характеризуются глубиной резания, подачей и скоростью резания. В первую очередь назначают глубину резания, затем подачу и в последнюю очередь скорость резания. Методика расчета режимов резания при одноинструментной обработке заключается в следующем.

    Прежде всего определяют предельные размеры:

    – расчетный диаметр для наружных поверхностей – D p =D пред.опер и для внутренних поверхностей – D p =D послед.опер; при фрезеровании, сверлении и неподвижной детали расчетным диаметром является наружный диаметр инструмента;

    – расчетную длину обработки с учетом врезания и перебега инструмента и взятия пробных стружек – L=l 1 +l+l 2 + l пр.

    Глубину резания при черновой обработке назначают, исходя из соображений снятия припуска за один рабочий ход; в этом случае глубина резания будет соответствовать промежуточному припуску.

    Расчетный припуск на обработку

    – наружных поверхностей – ;

    – внутренних поверхностей – .

    Если припуск превышает допускаемый для данного случая обработки, то назначают два и более рабочих ходов i = 1; 2…, но глубину резания принимают максимально допустимую, чтобы уменьшить число рабочих ходов. При чистовой обработке глубину резания назначают, исходя из условия обеспечения точности получаемого размера и заданной шероховатости поверхности. Глубина резания .

    После установления глубины резания выбирается подача. На подачу влияет глубина резания, характер обработки, обрабатываемый материал, сечение державки резца (для токарной обработки). Обычно задается интервал, например, мм/об. Подача должна быть максимально технологически допустимая. При черновой обработке подача лимитируется прочностью и жесткостью элементов технологической системы, стараются выбрать наибольшую подачу и принимают ее ближайшее значение для станка мм/об. При чистовой обработке подача выбирается в зависимости от заданной шероховатостью поверхности с учетом обрабатываемого материала, скорости резания и радиуса при вершине резца (для токарной обработки). Выбирают меньшую подачу и корректируют по паспортным данным станка.

    Период стойкости режущего инструмента Т выбирают по нормативам (среднее значение) в зависимости от размера и типа режущего инструмента, характеристики материала обрабатываемой детали и условий работы.

    После определения глубины подачи и периода стойкости режущего инструмента определяют скорость резания:

    ,

    где Т m – период стойкости инструмента;

    С V – постоянная величина, зависящая от материала инструмента, материала детали, вида обработки и характера обработки;

    t –глубина резания;

    s – подача;

    m, х v , у v – показатели степени, определяют по справочнику.

    Скорость резания зависит от выбранной глубины резания и подачи, качества обрабатываемого материала, режущих свойств инструмента, геометрических параметров режущего элемента инструмента и других факторов. В повседневной практике скорость резания определяют на основании нормативов режимов и вносят поправки в связи с факторами, не учитываемыми нормативами , м/мин.

    По данным скорости резания находят расчетную частоту вращения режущего инструмента или заготовки (n) или расчетное число двойных ходов инструмента в минуту.

    К р – поправочный коэффициент, представляет собой произведение из ряда коэффициентов, учитывающих изменения условий резания

    К р = К М К φ К γ К λ К r .

    Эффективную мощность на резце определяют по формуле N e =P z ·V·10 -3 , кВт. Мощность на приводе станка определяют по формуле N пр = N e /η ст и сравнивают с мощностью станка (N пр должна быть меньше N e).

    По найденным значениям режима резания производят проверочный расчет по усилию подачи, допускаемому прочностью механизма подачи станка, по крутящему моменту, допускаемому прочностью привода главного движения, по мощности станка. Если необходимо, корректируют рассчитанные значения подачи и скорости резания.

    КЛАССИФИКАЦИЯ ТЕХНОЛОГИЙ

    ПРОМЫШЛЕННЫЕ ТЕХНОЛОГИИ И ТЕХНИЧЕСКИЙ ПРОГРЕСС

    ВВЕДЕНИЕ

    ПРОМЫШЛЕННЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ

    В настоящее время важнейшими проблемами народного хозяйства России являются: улучшение качественных характеристик производимой промышленной продукции, снижение ее себестоимости и повышение производительности труда, значительное расширение масштабов технического перевооружения действующих предприятий, оснащение их новой высокоэффективной техникой, внедрение прогрессивной технологии и современных методов управления.

    Снижение материалоемкости, повышение эффективности использования материальных ресурсов, применение прогрессивных материалов – одна из наиболее актуальных задач промышленного производства. Создание и освоение новых материалов с высокими эксплуатационными характеристиками и стабильностью физико-механических свойств во времени позволит разработать принципиально новые образцы товаров широкого потребления и повышенного спроса, определяющих экономическое положение соответствующей отрасли и страны в целом..

    Внедрение высокопроизводительного и прецизионного оборудования, качественно новых технологических процессов, базирующихся на инновационном принципе, – основной путь наращивания промышленных мощностей современного производства. Такое оборудование и процессы должны широко использоваться при изготовлении наукоемкой продукции, соответствующей лучшим мировым образцам и пользующейся повышенным спросом на мировом рынке.

    Концепций и прогнозов, касающихся будущего России в ХХ1 веке, к его началу выдвинуто предостаточно. Подходы и мнения в них звучат самые разные. Некоторые из западных стран придерживаются точки зрения, которую высказал в одном из своих выступлений бывший премьер-министр Великобритании Джон Мейджор. Говоря о будущем России, он предрек ей роль кладовой ресурсов для нужд Запада, прибавив, что для этого хватит 40-50 миллионов населения. Если принять логику такого прогноза, то порожденная транснациональными корпорациями финансовая элита, которая, и правит миром, фактически уже сделала за Россию выбор – «кочегарка» и «прихожая». Но тогда этой самой элите придется приписать ряд довольно парадоксальных качеств – недальновидность, нерасчетливость, склонность к порождению очагов напряженности. Провоцируя нестабильность, уязвляя гордыню все еще ядерной державы, мировая финансовая элита, если таковая и существует, выглядит уж слишком отчаянной и злокозненной.

    Альтернативный сценарий основан на так называемой стратегии экономического роста. В ее фундаменте – ставка на активизацию конкурентных преимуществ российской экономики. Их оказывается восемь:



    1. Уровень образования совместно с ориентацией на коллективизм;

    2. Природные ресурсы;

    3. Территория и емкий внутренний рынок;

    4. Дешевая и достаточно квалифицированная рабочая сила;

    5. Научно-промышленный потенциал;

    6. Научные школы и конкурентоспособные технологии;

    7. Свободные производственные мощности,

    8. Опыт экспорта высокотехнологичной продукции и производственная кооперация.

    Для реализации всех этих преимуществ, разумеется, должна быть продумана система экономических и административных мер. Расчеты уже в среднесрочной перспективе обещают устойчивый экономический рост не менее чем на 7% в год, общее увеличение инвестиций – по меньшей мере на 15% в год, а в наукоемкую промышленность и новые технологии – до 30%. Инфляция также будет ограничена 30% в год…

    Главные надежды многие специалисты прямо возлагают на реализацию научно-промышленного потенциала страны. У России, располагающей 12% ученых мира, собственно, и нет другой серьезной альтернативы. На сырье, даже имея 28% мировых запасов, приемлемого подъема экономики достигнуть невозможно. По прогнозам, его потребление к 2015 году возрастет всего в 2 раза, а мы уже сейчас по внутреннему валовому продукту на душу населения (ВВП) отстаем от развитых стран примерно в 10 раз. Зато объем мирового рынка наукоемкой продукции сегодня составляет 2 трлн. 500 млрд. долларов (доля России – 0,3%). К 2015 году он достигнет примерно 4 трлн. долл. Даже десятая часть этой суммы примерно на порядок превышает потенциальный российский нефте-газовый экспорт. С другой стороны, шансы раскрутить инновационный процесс в национальном масштабе, отпустив инфляцию до 30% в год, представляются проблематичными. Из мирового опыта известно (Аргентина), что это предельный уровень, выше которого инфляция становится главным препятствием экономического роста.

    По всем основным показателям страна имеет ту же промышленную инфраструктуру, что и западные страны. И лишь по развитию технологической среды (системы обеспечения качества, стандарты, автоматизация разработок, компьютеризация производства и т.д.) мы очень сильно от них отстаем. Уровень развития технологической инфраструктуры – это и есть своего рода водораздел между индустриальными и постиндустриальными странами. Его-то и надлежит России преодолеть.

    Насколько серьезно мы отстаем в данном отношении? Цифры говорят сами за себя. В 2008 г. каждый занятый в российской экономике вносил в ВВП страны вклад в размере 16,1 тысячи долларов. Сравним: в ЮАР этот показатель составлял 38,1 тысячи, во Франции – 59,4 тыс., в США – 74,6 тыс., в Люксембурге – 110 тысяч. Почему так происходит? Откуда такая разница? С одной стороны, в развитых странах предприятия производят более качественную и сложную продукцию, чем в России. Она продается дороже и содержит намного большую добавленную стоимость. С другой стороны, намного более совершенное техническое вооружение западных предприятий обеспечивает большую эффективность труда и позволяет выпускать большее количество готовой продукции.

    Для примера возьмем две автомобильные компании, в которых занято равное число работников: АвтоВАЗ – 106 тыс. человек и BMW – 107 тыс. АвтоВАЗ выпускает в год в среднем 734 тысячи автомобилей общей стоимостью 6,1 млрд долларов, BMW – 1,54 млн машин на 78,9 млрд. То есть в «натуральном» выражении производительность на АвтоВАЗе меньше в 2 раза, а в стоимостном – более чем в 13 раз.

    Анализ мирового рынка показывает: производство наукоемкой продукции обеспечивают всего порядка 50 макротехнологий (макротехнология представляет собой совокупность знаний и производственных возможностей для выпуска на мировой рынок конкретных изделий – самолетов, реакторов, судов, материалов, компьютерных программ и т.п.). Семь наиболее развитых стран, обладая 46 макротехнологиями, держат 80% этого рынка. США ежегодно получают от экспорта наукоемкой продукции около 700 млрд. долл., Германия – 530, Япония –400. По 16 макротехнологиям прогноз на перспективу уже сделан (см. таблицу).

    Рынок макротехнологий (в млрд.долл.)

    2010 г. 2015 г.

    Авиационные технологии 18-22 28

    Космические технологии 4 8

    Ядерные технологии 6 10

    Судостроение 4 10

    Автомобилестроение 2 6-8

    Транспортное машиностроение 4 8-12

    Химическое машиностроение 3 8-10

    Спецметаллургия. Спецхимия.

    Новые материалы 12 14-18

    Технология нефтедобычи и переработки 8 14-22

    Технология газодобычи и транспортировки 7 21-28

    Энергетическое машиностроение 4 12-14

    Технология промышленного

    оборудования. Станкостроение 3 8-10

    Микро- и радиоэлектронные технологии 4 7-9

    Компьютерные и информационные

    технологии 4,6 7,8

    Коммуникация, связь 3,8 12

    Биотехнологии 6 10

    Всего 94-98 144-180

    На мировом рынке происходит жесточайшая конкуренция. Так, за последние 7-10 лет США потеряли 8 макротехнологий и, соответственно, их рынки. В результате получили дефицит платежеспособного спроса в 200 млрд. долл. Причина этого в том, что примерно 15 лет назад европейцы сформировали общую программу с целью отвоевать часть рынка у США и Японии. Под нее были перестроены технологии, проведены фундаментальные исследования, реструктурирована промышленность.

    Сейчас аналогичную целевую атаку предпринимает европейский авиационный консорциум. Его эксперты определили возможность отвоевать 25% рынка тяжелых самолетов (300 млрд. долл.). Была сформирована соответствующая международная программа. Даже конкурентов-американцев в нее вовлекли, скупая их фирмы. России предложили создать совместный научный центр, заключили контракты с нашими заводами. В целом 20% от всего объема программы стали российскими. Словом, история этого крупнейшего транснационального проекта четко свидетельствует: при распределении заказов решающей, прежде всего, оказывается деловая целесообразность.

    По оценке наших специалистов за рынок 10-15 макротехнологий из тех 50, что определяют потенциал развитых стран, Россия вполне способна побороться. Выбор макротехнологических приоритетов в нашей стране должен осуществляться на совершенно новом для нас принципе. Поддержка десятков приоритетных научно-технических программ по всему фронту мыслимых исследований совершенно бесперспективна. Этого сегодня не может себе позволить даже самая богатая страна. Для присвоения той или иной макротехнологии статуса приоритетной для нашей страны предлагается сопостовлять затраты на формирование по ней базы знаний (полной или достаточной) и возможный эффект от реализации конкурентной продукции, созданной на ее основе.

    По каждой приоритетной макротехнологии формируются федеральные целевые программы. Заказы по ним правительство на конкурсной основе размещает в институтах и КБ. В результате промышленность получает связанный комплекс заданий по конструированию цельных технологических систем. (Кстати, по аналогичной схеме Россия, приняв лет 15 назад целевую программу «Истребитель-90-х», завоевала рынок объемом в 5 млрд.долл., подобная же аналогия напрашивается, если вспомнить программу по созданию ракетно-космической техники). Создается конкурентная, гармонизированная с мировыми стандартами технологическая среда. А поскольку все целевые программы заведомо ориентированы на конечную продукцию мирового уровня, их привлекательность для западных и российских инвесторов и кредиторов будет достаточно высока. Роль государства – гарантировать кредиты риска.

    Для России сейчас, как никогда, актуальна интеграция в мировой рынок наукоемкой технологии. В стране почти отсутствует платежеспособный спрос на часть наукоемкой продукции, что приводит к застою и старению наиболее передовой технологической базы (авиация, космонавтика, электроника, информатика, связь и т.п.). Согласно прогнозам, объем экспорта по приоритетным макротехнологиям уже в первом двадцатилетии ХХ1 века позволит в 2-3 раза повысить платежеспособность населения и обеспечить спрос на наукоемкую продукцию на внутреннем рынке. Это послужит стимулом дальнейшего экономического роста.

    Концепция национальных макротехнологических приоритетов встречена с интересом не только в среде специалистов, но и в правительстве. Это позволяет надеяться, что в ХХ1 веке мы все еще сами в состоянии сделать достойный выбор – не в пользу «кочегарки» и «прихожей».

    В современной технической (и не только) литературе широко используются различные варианты понятия "технология". Целесообразно как-то систематизировать эти определения.

    Технология (Тechnology) – в дословном переводе наука о мастерстве.

    Существует ряд отечественных определений, из которых приведем только энциклопедические:

    1. Наука или совокупность сведений о методах переработки сырья, материалов, полуфабрикатов, комплектующих, теперь и программных средств в изделия, отвечающие заданным требованиям с точки зрения их технического назначения и качества.

    2. Совокупность средств, процессов, операций, методов, с помощью которых входящие в производство элементы преобразуются в выходящие; она охватывает машины, механизмы, навыки и знания.

    Зарубежное (западное) определение: применение (употребление) чего либо в индустрии, коммерции, медицине и других областях.

    Прогрессивная технология . Технология более высокой ступени развития (по сравнению с существующей), которая является результатом внедрения процессных инноваций. Эта категория включает технологии, базирующиеся на заимствованном передовом опыте, когда внедряются новые или усовершенствованные методы производства изделий, в т.ч. реализованные ранее в производственной практике в смежных областях одного предприятия, других предприятий и других стран и распространяемые путем технологического обмена (беспатентные лицензии, ноу-хау, инжиниринг и т.п.).

    Наукоемкая технология . Технология, основанная на новых или значительно усовершенствованных методах производства. Новой технологии соответствует понятие радикальной продуктовой инновации, а усовершенствованной – инкрементальной продуктовой инновации.

    Наукоемкие технологии – это технологии, ориентированные на выпуск продукции, выполнение работ и услуг с использованием последних достижений науки и техники, когда получаемая продукция соответствует по своим экономическим и эксплуатационным свойствам лучшим мировым образцам и вполне удовлетворяет новые потребности общества по сравнению с ранее выпускавшейся аналогичного назначения. Создание таких технологий включает проведение обеспечивающих научных исследований и разработок, что приводит к дополнительным затратам средств и необходимости привлечения к работам научного потенциала и персонала. Наукоемкость – показатель, отражающий пропорцию между научно-технической деятельностью и производством в виде величины затрат на науку, приходящихся на единицу продукции. Она может быть представлена соотношением числа занятых научной деятельностью и всеми занятыми в производстве (на предприятии, в отрасли и т.д.).

    Высокая технология (High Technology). Технология, базирующаяся на создании новых свойств изделий путем воздействия на материалы на межмолекулярном, межатомном, внутриатомном и т.п. уровнях. Примерами таких воздействий может быть использование энергии ядерного излучения (полимеризация высокомолекулярных соединений), космического излучения (получение сверхчистых материалов), лазерная, плазменная, ультразвуковая и т.п. виды обработки.

    Критическая технология . Технология, разработка которой обусловлена критической ситуацией, вызванной необходимостью срочного выпуска продукции в условиях ограниченного времени и ограниченных материальных ресурсов. Технология, далекая от оптимальной, когда главенствующим является не себестоимость изделий, а необходимость их изготовления к определенному календарному сроку.

    Разработка технологических процессов (ТП) входит основным разделом в этап «жизненного цикла изделия», связанный с технологической подготовкой производства, и выполняется на основе принципов "Единой системы технологической подготовки производства" (ГОСТ 14.001-83). ТП может разрабатываться с использованием имеющегося типового или группового ТП. При отсутствии таковых ТП разрабатывается как единичный, с учетом ранее принятых прогрессивных решений в действующих единичных ТП - аналогах.

    Базовой исходной информацией для проектирования ТП служат: рабочие чертежи изделия в электронном виде или в твердой копии, технические требования, объем годового выпуска изделий, наличие оборудования и оснастки.

    В машиностроении изделием называют предмет производства, подлежащий изготовлению. В качестве изделия может выступать машина, устройство, механизм, инструмент и т.п. В качестве составных частей изделия приняты сборочная единица и деталь. Сборочная единица – это часть изделия, составные элементы которой подлежат соединению на предприятии обособлено от других элементов изделия. Сборочная единица в зависимости от конструкции может состоять либо из отдельных деталей, либо включать сборочные единицы более высоких порядков и детали. Различают сборочные единицы первого, второго и более высоких порядков. Сборочная единица первого порядка входят непосредственно в изделие. Она состоит либо из отдельных деталей, либо из одной или нескольких сборочных единиц второго порядка и деталей. Сборочная единица второго порядка расчленяется на детали или сборочные единицы третьего порядка и детали и т.д. Сборочная единица наивысшего порядка расчленяется только на детали. Рассмотренное деление изделия на составные части производится по технологическому признаку.

    Деталь – это изделие, изготавливаемое из однородного по наименованию и марке материала без применения сборочных операций. Характерный признак детали – отсутствие в ней разъемных и неразъемных соединений. Деталь представляет собой комплекс взаимосвязанных поверхностей, выполняющих различные функции при эксплуатации машины.

    Производственный процесс – это совокупность всех действий людей и орудий труда, необходимых на данном предприятии для изготовления и ремонта продукции. Например, производственный процесс изготовления машины включает не только изготовление деталей и их сборку, но и добычу руды, ее транспортирование, превращение в металл, получение заготовок из металла. В машиностроении производственный процесс представляет собой часть общего производственного процесса и состоит из трех этапов: получение заготовки, преобразование заготовки в деталь, сборка изделия. В зависимости от конкретных условий перечисленные три этапа можно осуществлять на разных предприятиях, в разных цехах одного предприятия и даже в одном цехе.

    Технологический процесс – часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. Под изменением состояния предмета труда понимается изменение его физических, химических, механических свойств, геометрии, внешнего вида. Кроме того, в технологический процесс включены дополнительные действия, непосредственно связанные или сопутствующие качественному изменению объекта производства; к ним относят контроль качества, транспортирование и др. Для осуществления технологического процесса необходима совокупность орудий производства, называемых средствами технологического оснащения, и рабочее место.

    Технологическое оборудование – это средство технологического оснащения, в котором для выполнения определенной части технологического процесса размещают материалы или заготовки, средства воздействия на них, а также технологическую оснастку.. К ним относят, например, литейные машины, прессы, станки, испытательные стенды и т.п.

    Технологическая оснастка – это средство технологического оснащения, дополняющее технологическое оборудование для выполнения определенной части технологического процесса. К ним относятся: режущий инструмент, приспособления, измерительные средства.

    Технологическое оборудование совместно с технологической оснасткой, а в некоторых случаях и манипулятором, принято называть технологической системой. Этим понятием подчеркивается, что результат технологического процесса зависит не только от оборудования, но и в не меньшей степени от приспособления, инструмента, заготовки.

    Заготовкой называется предмет труда, из которого изменением формы, размеров, свойств поверхности или материала изготавливают деталь. Заготовку перед первой технологической операцией называют исходной заготовкой.

    Рабочее место представляет собой элементарную единицу структуры предприятия, где размещены исполнители работы и обслуживаемое технологическое оборудование, подъемно-транспортные средства, технологическая оснастка и предметы труда.

    По организационным, технологическим и экономическим причинам технологический процесс подразделяется на части, которые принято называть операциями.

    Технологической операцией называется часть технологического процесса, выполняемая на одном рабочем месте. Операция охватывает все действия оборудования и рабочих над одним или несколькими объектами производства. При обработке на станках операция включает все действия рабочего, управляющего технологической системой, установку и снятие предмета труда, а также движения рабочих органов технологической системы. Число операций в технологическом процессе может изменяться от одной (изготовление детали на прутковом автомате, изготовление корпусной детали на многооперационном станке) до многих десятков (изготовление турбинных лопаток, сложных корпусных деталей). Формируют операцию, главным образом, по организационному принципу, так как она является основным элементом производственного планирования и учета.

    В свою очередь, технологическая операция также состоит из ряда элементов: технологических и вспомогательных переходов, установа, позиций, рабочего хода.

    Технологический переход – законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технических режимах и установке. Вспомогательный переход – это законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением свойств предмета труда, но необходимы для выполнения технологического перехода (например, установка заготовки, смена инструмента и т.п.). Переход можно выполнять в один или несколько рабочих ходов.

    Рабочий ход – это законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемая изменением формы, размеров, качества поверхности и свойств заготовки. При обработке заготовки со съмом слоя материала используется термин «припуск».

    Припуском называется слой материала, удаляемый с поверхности заготовки в целях достижения заданных свойств изготавливаемой поверхности. Слой материала, удаляемый с одной поверхности готовой детали в результате выполнения всех технологических переходов, называется общим припуском на обработку этой поверхности.

    Этап жизненного цикла изделия (ЖЦИ), связанный с технологической подготовкой производства, предусматривает:

    Проектирование рациональной заготовки;

    Разработку маршрутной технологии изготовления и сборки изделий с выбором или проектированием исходных заготовок и необходимого технологического оборудования;

    Разработку операционной технологии изготовления и сборки изделий с выбором или проектированием средств технологического оснащения (СТО);

    Разработку технологической документации в соответствии с ЕСТД;

    Генерацию УП для оборудования с ЧПУ;

    Выбор или проектирование средств механизации и/или автоматизации технологических процессов (ТП);

    Разработку планировочных решений по размещению технологического оборудования на предусматриваемой территории;

    Ведение архива технологической документации;

    Оформление изменений в технологической документации, связанных с конструкторскими доработками или совершенствованием ТП.

    Заготовка выбирается или проектируется, исходя из соображений, оптимизации всего технологического процесса (ТП), включая заготовительный этап и последующую обработку. При необходимости проводится технико-экономическое обоснование. Проектирует заготовку технолог механического цеха, а ее изготовление осуществляется по технологии заготовительного подразделения предприятия или смежника.

    При проектировании заготовки ее размеры определяются по результатам расчета т.н. межоперационных припусков. Припуск – слой материала, удаляемый с поверхности заготовки в целях достижения заданных свойств обрабатываемой поверхности детали. Различают общий припуск и промежуточные припуски по всем последовательно выполняемым технологическим переходам и операциям обработки данной поверхности детали. Общий припуск на какую либо поверхность представляет собой сумму промежуточных припусков на ту же поверхность. Промежуточные припуски необходимы для определения промежуточных (по технологическим переходам и операциям) размеров деталей, общий – для определения размеров заготовок. В практике используются расчетно-аналитический и опытно-статистический методы расчета припусков.

    Технология в любой области человеческой деятельности – это отрасль науки, занимающаяся исследованием закономерностей технологических процессов изготовления изделий, с целью использования результатов изучения для обеспечения требуемого качества и количества изделий с наивысшими технико-экономическими показателями. Наука о технологии – это не просто сумма каких-то знаний о технологических процессах, а система строго сформулированных положений о явлениях и их глубинных связях, выраженных посредством особых понятий. С другой стороны, наука о технологии, как и любая отрасль знания, - это результат практической деятельности человека; она подчинена целям развития общественной практики и способна служить теоретической основой.

    Объектом технологии является технологический процесс, а предметом – установление и исследование внешних и внутренних связей, закономерностей технологического процесса. Только на основе их глубокого изучения возможно построение прогрессивных технологических процессов, базирующихся на инновационном принципе, обеспечивающих изготовление изделий высокого качества с малыми затратами.

    Современная технология развивается по следующим основным направлениям: создание новых материалов; разработка новых технологических принципов, методов, процессов, оборудования; механизация и автоматизация технологических процессов, устраняющая непосредственное участие в них человека. Если осуществление технологического процесса порождает необходимость изготовления орудий труда, являясь причиной их появления, то развитие и совершенствование орудий труда в свою очередь стимулирует совершенствование самого процесса. Становление технологии как научной дисциплины затруднено огромным разнообразием объектов производства (от миниатюрных приборов до атомных электростанций, от простейших изделий типа молотка до сложнейших машин – таких, как космический корабль), бесчисленным множеством методов изготовления и оборудования для их осуществления. Этим обусловлено большое количество классификаций технологий по различным признакам. Приведем только некоторые.

    Технологические процессы по функциональному составу подразделяются на заготовительные процессы для получения заготовок, процессы обработки заготовок для получения деталей и сборочные процессы.

    Для качественного функционирования заготовительного производства очень важен современный подход к проектированию заготовки с точки зрения оптимизации себестоимости ее изготовления с учетом объема последующей обработки и коэффициента использования материала. Необходимо также учитывать и объемы выпуска продукции, ибо от этого в существенной степени зависит подход к построению технологического процесса. Сокращение расхода металлов и других конструкционных материалов достигается путем их более эффективного использования, применения при проектировании новых изделий прогрессивных решений, а также совершенствования методов обработки материалов.

    Значительное сокращение расхода материалов может быть достигнуто при переходе на принципиально новые технологические процессы изготовления заготовок, размеры которых максимально приближаются к размерам готовых деталей. Сокращение припусков на механическую обработку в свою очередь связано с повышением точности заготовок и уменьшением толщины дефектного поверхностного слоя. Технология малоотходного производства способствует также интенсификации механической обработки, так как в ряде случаев могут быть исключены черновые операции (точение, зубофрезерование и другие), которые с успехом заменяются силовым шлифованием или иной чистовой обработкой с высокими режимами резания.

    По мере усложнения конфигурации заготовки, уменьшения припусков, повышения точности размеров и параметров расположения поверхностей усложняется и удорожается технологическая оснастка заготовительного цеха и возрастает себестоимость заготовки, но при этом снижается трудоемкость и себестоимость последующей механической обработки заготовки, повышается коэффициент использования материала. Заготовки простой конфигурации дешевле, так как не требуют при изготовлении сложной и дорогой технологической оснастки, однако такие заготовки требуют последующей трудоемкой обработки и повышенного расхода материала.

    Главным при выборе заготовки является обеспечение заданного качества готовой детали при ее минимальной себестоимости. Себестоимость детали определяется суммированием себестоимости заготовки по калькуляции заготовительного цеха и себестоимости ее последующей обработки до достижения заданных требований качества по чертежу. Выбор заготовки связан с конкретным технико-экономическим расчетом себестоимости готовой детали, выполняемым для заданного объема годового выпуска с учетом других условий производства.

    К числу основных технологических процессов малоотходного производства заготовок, как известно из курса «Технология конструкционных материалов» относятся: прогрессивные методы изготовления литых заготовок из металлов и пластмасс; методы получения заготовок горячим и холодным пластическим деформированием, включая в себя процессы изготовления заготовок без использования прессового оборудования (взрывом, электроимпульсная), холодной высадки и калибровки для исключения последующей механической обработки и т.д.; методы работы с любыми листовыми материалами (металлы, ткани, кожа, пластмассы и т.п.) путем вырубки или раскроя с использованием прогрессивных методов (газопламенного, плазменного, лазерного); современные методы и оборудование для резки материалов, включая электроконтактную, позволяющую значительно повысить производительность при работе с трудно обрабатываемыми материалами. Для заготовок из металло- и минералокерамики получили распространение методы и оборудование порошковой металлургии.

    Основу технологических процессов изготовления деталей составляют формообразующие методы, методы изменения физико-механических свойств материала, методы воздействия на качество поверхностного слоя (методы покрытия, отделки, окраски и др.). Формообразующие методы в свою очередь делятся на методы со съемом материала и без съема материала. Первые подразделяются на методы обработки резанием (точение, строгание, сверление, зенкерование, развертывание, фрезерование, протягивание и др.), методы абразивной обработки (шлифование, хонингование, полирование и др.), электрофизические и электрохимические методы.

    К методам без съема материала относятся методы пластического деформирования; к методам изменения физико-механических свойств материала относятся различные виды термической обработки, химико-термические процессы.

    Технологический процесс сборки содержит действия по установке и образованию соединений деталей, сборочных единиц в изделие. При этом учитывается технически и экономически целесообразная последовательность получения изделия. Качество сборочной единицы характеризуется точностью относительного движения или расположения деталей в сборочной единице, силовым замыканием, натягом в неподвижных соединениях, зазором в подвижных соединениях, качеством прилегания поверхностей и другими.

    Под сборочной операцией понимается процесс непосредственного формирования сборочной единицы. Он, как правило, включает ориентацию, соединение, регулировку и закрепление (фиксацию) деталей и сборочных единиц. Сборку соединений условно можно разделить на сборку с натягом и без натяга. Сборка с натягом осуществляется или методом пластического деформирования, или тепловым методом. В свою очередь тепловой метод реализуется посредством нагрева охватывающей детали и (или) охлаждения охватываемой детали.

    По масштабу выпуска продукции современное промышленное производство и, в частности машиностроение, условно делится на три типа: единичное, серийное и массовое. Формирование операций для этих типов производств осуществляется по-разному в зависимости от характера, вида и формы организации сборочного процесса.

    Единичное производство характеризуется малым объемом выпуска одинаковых изделий, повторное изготовление и ремонт которых, как правило, не предусматривается. Изделия выпускаются широкой номенклатуры в относительно малых количествах, зачастую индивидуально, и либо совсем не повторяются, либо повторяются через неопределенные промежутки времени. Продукция единичного производства – изделия, не имеющие широкого применения и изготавливаемые по индивидуальным заказам, предусматривающим выполнение специальных требований (опытные образцы машин в различных отраслях машиностроения, крупные гидротурбины, уникальные металлорежущие станки, прокатные станы и т.д.).

    В условиях единичного и мелкосерийного производства деление на операции осуществляется, как правило, по собираемым сборочным единицам из расчета того, что каждая машина состоит из ряда сборочных единиц: узлов, подузлов, комплектов и отдельных деталей. Такое деление изделий машиностроения на сборочные единицы необходимо для облегчения сборки и позволяет создавать машины по агрегатному принципу. Большое значение имеет унификация сборочных единиц, т.к. она позволяет сократить число специальных сборочных единиц и тем самым способствует уменьшению затрат. Деление на отдельные сборочные единицы позволяет осуществлять их изготовление и регулирование одновременно, независимо одна от другой и, следовательно, сокращать сроки изготовления машины. При этом желательно, чтобы каждая сборочная единица содержала бы как можно меньшее число деталей.

    Серийное производство характеризуется изготовлением или ремонтом изделий периодически повторяющимися партиями. Серийное производство делится на мелкосерийное, среднесерийное и крупносерийное. Одним из показателей принадлежности того или иного производства к определенному типу является т.н. коэффициент закрепления операций за одним рабочим местом. Для мелкосерийного производства коэффициент колеблется от 20 до 10, для среднесерийного соответственно от 20 до 10, для крупносерийного – от 1 до 10.

    Массовое производство характеризуется небольшой номенклатурой, большим объемом выпуска изделий, непрерывным изготовлением или ремонтом изделий продолжительное время, в течение которого на большинстве рабочих мест выполняется одна, постоянно повторяющаяся операция. В условиях массового и крупносерийного производства формирование переходов в операции производится в соответствии с необходимой последовательностью выполнения установки и закрепления деталей и других сборочных единиц в собираемый объект так, чтобы общие затраты времени на операцию были близки или кратны такту выпуска изделий. При возможности изменения в последовательности установки и закреплении сборочных единиц переходы в операции формируются таким образом, чтобы одинаковые по характеру и квалификации работы выполнял один рабочий. Это позволяет увеличивать производительность, так как совершенствуются навыки рабочего, и уменьшать потребности в оборудовании и рабочем инструменте.

    В массовом и крупносерийном производствах используется специальное и специализированное оборудование, перенастройка которого на новый (не известный в момент проектирования оборудования) вид продукции невозможна или связана со значительными затратами. В средне- и мелкосерийном производстве основная доля парка оборудования до сих пор приходится на станки с ручным управлением, резервы повышения производительности которых в основном исчерпаны. Поэтому увеличение объема этого вида производства требует пропорционального роста числа квалифицированных рабочих, нехватка которых остро ощущается уже при существующих объемах выпуска продукции. В результате в промышленности возникли две встречные задачи: обеспечение гибкости крупносерийного и повышение производительности средне- и мелкосерийного производств. Производительность (производственную мощность) можно определить как число изделий, изготавливаемых в производственной системе за некоторый интервал времени, обычно за год.

    Ярко выраженное массовое производство характеризуется одной и той же постоянно повторяющейся операцией на протяжении определенного отрезка календарного времени, т.е. для такого производства коэффициент закрепления операций равен единице. Соответственно чем выше этот коэффициент, тем ниже серийность, т.е., скажем, для единичного производства он может достигать многих десятков или сотен.

    Если рассматривать в комплексе современное промышленное предприятие, то можно отметить, что в нем сконцентрированы технологии основного и вспомогательного производства и сопутствующие процессы. Основное производство занимается непосредственным изменением качественного состояния предметов труда. В результате могут происходить изменения свойств предметов труда: могут изменяться физические, химические, механические свойства материалов и полуфабрикатов, размеры и форма предметов труда, качество поверхностного слоя, внешний вид и др. Для качественного преобразования предметов труда необходимы затраты энергии, времени и материальных средств. При этом технологический процесс или его части могут осуществляться при непосредственном участии человека или без него.

    Вспомогательное производство характеризуется процессами, которые необходимы для осуществления процессов основного производства. Как известно, операции технологического процесса осуществляются на технологическом оборудовании с использованием средств технологического оснащения. Технологическое оборудование нужно поддерживать в рабочем состоянии и обеспечить определенные выходные характеристики. Поэтому на большинстве промышленных предприятий организуется служба главного механика, занимающаяся профилактическим и капитальным ремонтом технологического оборудования. Технологическую оснастку (приспособления, обрабатывающий и измерительный инструменты) наиболее целесообразно закупать на стороне, но если по основному технологическому процесс требуется специальная оснастка, ее приходится изготавливать в инструментальных подразделениях предприятия. То же касается и переточки затупившегося обрабатывающего инструмента. Служба главного энергетика занимается бесперебойным снабжением основного производства энергией. Служба снабжения занимается обеспечением основного и вспомогательного производства всеми необходимыми комплектующими и материалами.

    Сопутствующие процессы. Во время основного и вспомогательного процессов, как правило, имеют место процессы трения, выделения тепловой энергии и нагрева элементов технологической системы, вибрации, химической реакции; все они могут как положительно, так и отрицательно влиять на результаты технологического процесса. Сопутствующие процессы – это объективно действующие процессы независимо от нашего желания, поэтому приходится принимать различные меры по уменьшению их вредного влияния.

    32 33 34 35 36 37 38 39 ..

    6.2. ИСХОДНЫЕ ДАННЫЕ И ПОСЛЕДОВАТЕЛЬНОСТЬ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

    Для разработки технологических процессов исходными и руководящими материалами являются: производственная программа; рабочий чертеж детали и чертеж сборочной единицы, в которую входит деталь; рабочий чертеж заготовки; технологические условия на материалы и сборочные единицы; руководящие и справочные материалы (альбомы приспособлений, каталоги и паспорта оборудования, ГОСТы и нормали на измерительный и режущий инструмент, нормативы режимов резания и технического нормирования, операционных припусков и др.).

    В начале разработки технологического процесса устанавливают тип производства. Для серийного производства дополнительно определяют размер партии деталей с учетом календарных сроков выпуска готовых изделий, наличия запаса материалов, длительности процессов обработки и др. Затем проводят контроль чертежей и проверку технологичности конструкции деталей, сборочных единиц и всей машины. При обнаружении недостатков или ошибок в чертежах технолог дает конструктору указания для их устранения. После проверки чертежей приступают к проектированию технологического процесса, исходя из общих правил разработки технологических процессов и выбора средств технологического оснащения, предусмотренных ГОСТ 14301-83.

    Важным этапом разработки технологического процесса является выбор заготовки. Выбор заготовки зависит от формы детали и ее размеров, исходного материала, вида производства, требований к ее качеству, а также экономических соображений. При выборе заготовки следует стремиться к экономии материала, созданию безотходной и малоотходной технологии и интенсификации технологических процессов.

    При выборе заготовки сначала устанавливают вид заготовки (отливка, поковка, штамповка, прокат, сварная конструкция). Затем выбирают метод формообразования заготовки (литье в песчаные, стержневые или металлические формы, ковка в подкладных штампах и т. д.). В первую очередь выбирают такой способ изготовления заготовки, который обеспечивает заданное качество детали. При наличии нескольких способов выбирают способ, при котором будет обеспечена наибольшая производительность и минимальная себестоимость получения заготовки и механической обработки.

    Номенклатура машин и аппаратов текстильной промышленности весьма разнообразна, поэтому виды заготовок и способы их изготовления самые различные. Основными видами заготовок в текстильном машиностроении являются: отливки из черных и цветных металлов, поковки и штамповки, заготовки из листового металла, проката, сварные заготовки, заготовки из порошковых и неметаллических материалов.

    Литые заготовки, не подвергающиеся ударным нагрузкам, получают из серого и модифицированного чугуна, а работающие в тяжелых условиях и испытывающие большие напряжения, из стали. Заготовки в виде поковок, получаемых свободной ковкой, применяют преимущественно для крупных деталей в единичном и мелкосерийном производстве. При изготовлении поковок стремятся получить конфигурацию заготовок, приближающуюся к упрощенным очертаниям детали.

    Заготовки из проката применяют для деталей, по конфигурации приближающихся к какому-либо виду проката, когда отсутствует значительная разница в поперечных сечениях детали и можно при получении окончательной ее формы избежать снятия большого количества материала. Например, гайки выполняют из прутков шестигранного сечения, вкладыши подшипников - из труб, пружины - из

    проволоки. Сварные и штампосварные заготовки в основном используют для изготовления стальных деталей сложной конфигурации, когда из одного куска проката невозможно или экономически невыгодно получить заготовку, например, изготовление ступенчатых валов с большой разницей диаметров ступеней.

    Заготовки из порошковых материалов получают прессованием смесей из порошков в пресс-формах под давлением 100-600 МПа с последующим спеканием спрессованных деталей. К деталям из порошковых материалов относятся кольца крутильных и прядильных машин, самосмазывающиеся подшипники, узлы без смазочного материала и др. Достоинством порошковой технологии является возможность изготовления деталей, практически не требующих механической обработки.

    К заготовкам из неметаллических материалов относят пластические массы, древесину, резину, кожу и др. В текстильном машиностроении используют также листы, прутки, полосы из пластмасс различного вида.

    Заготовки характерных деталей чесальных, прядильных и трикотажных машин, ткацких станков, красильно-отделочного оборудования, машин для производства химических волокон рассмотрены в соответствующих главах второго раздела.

    Построение и выбор варианта технологического процесса обработки резанием во многом зависят от правильного выбора технологических баз. На первой операции должны быть обработаны те поверхности, которые будут приняты за технологическую базу для последующей операции. На последующих операциях технологические базы должны быть по возможности точными по геометрической форме и шероховатости поверхности, должны выполняться принципы постоянства и совмещения баз.

    Составление маршрута обработки детали представляет сложную задачу с большим количеством возможных вариантов решения. Его цель - дать общий план обработки детали, наметить содержание операций технологического процесса и выбрать тип оборудования. Маршрут обработки составляют исходя из требований рабочего чертежа, технических условий и принятой заготовки. При построении маршрута обработки исходят из того, что каждый последующий метод обработки должен быть точнее предыдущего.

    Припуски назначают оптимальными с учетом конкретных условий обработки. Рассчитывают операционные припуски, допуски и промежуточные размеры заготовки. Промежуточные размеры указывают в операционном эскизе с учетом припуска на последующую обработку. Операционную технологию разрабатывают с учетом места каждой операции в маршрутной технологии. При проектировании технологических операций выполняют следующие взаимосвязанные работы: выбирают структуру построения операции механической обработки; уточняют содержание технологических переходов в операции; выбирают модель станка; выбирают технологическую оснастку; определяют режим обработки и норму времени; опреде-ляют разряд работы; обосновывают эффективность выполнения операции; оформляется технологическая документация.

    Детализация технологического процесса зависит от типа производства. В единичном производстве технологические процессы разрабатываются до уровня составления маршрута операций с указанием их последовательности, требуемого оборудования, приспособлений, режущего и измерительного инструмента и времени на обработку. В массовом и серийном производстве технологические процессы разрабатывают подробно с обоснованием всех принятых решений.

    ПОСЛЕДОВАТЕЛЬНОСТЬ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

    КЛАССИФИКАЦИЯ ТЕХНОЛОГИЙ

    ПРОМЫШЛЕННЫЕ ТЕХНОЛОГИИ И ТЕХНИЧЕСКИЙ ПРОГРЕСС

    ВВЕДЕНИЕ

    ПРОМЫШЛЕННЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ

    Сегодня важнейшими проблемами народного хозяйства России являются: улучшение качественных характеристик производимой промышленной продукции, снижение ее себестоимости и повышение производительности труда, значительное расширение масштабов технического перевооружения действующих предприятий, оснащение их новой высокоэффективной техникой, внедрение прогрессивной технологии и современных методов управления.

    Снижение материалоемкости, повышение эффективности использования материальных ресурсов, применение прогрессивных материалов – одна из наиболее актуальных задач промышленного производства. Создание и освоение новых материалов с высокими эксплуатационными характеристиками и стабильностью физико-механических свойств во времени позволит разработать принципиально новые образцы товаров широкого потребления и повышенного спроса, определяющих экономическое положение соответствующей отрасли и страны в целом..

    Внедрение высокопроизводительного и прецизионного оборудования, качественно новых технологических процессов, базирующихся на инновационном принципе, – основной путь наращивания промышленных мощностей современного производства. Такое оборудование и процессы должны широко использоваться при изготовлении наукоемкой продукции, соответствующей лучшим мировым образцам и пользующейся повышенным спросом на мировом рынке.

    Концепций и прогнозов, касающихся будущего России в ХХ1 веке, к его началу выдвинуто предостаточно. Подходы и мнения в них звучат самые разные. Некоторые из западных стран придерживаются точки зрения, которую высказал в одном из своих выступлений бывший премьер-министр Великобритании Джон Мейджор. Говоря о будущем России, он предрек ей роль кладовой ресурсов для нужд Запада, прибавив, что для этого хватит 40-50 миллионов населœения. В случае если принять логику такого прогноза, то порожденная транснациональными корпорациями финансовая элита͵ которая, и правит миром, фактически уже сделала за Россию выбор – «кочегарка» и «прихожая». Но тогда этой самой элите придется приписать ряд довольно парадоксальных качеств – недальновидность, нерасчетливость, склонность к порождению очагов напряженности. Провоцируя нестабильность, уязвляя гордыню всœе еще ядерной державы, мировая финансовая элита͵ если таковая и существует, выглядит уж слишком отчаянной и злокозненной.

    Альтернативный сценарий основан на так называемой стратегии экономического роста. В ее фундаменте – ставка на активизацию конкурентных преимуществ российской экономики. Их оказывается восœемь:

    1. Уровень образования совместно с ориентацией на коллективизм;

    2. Природные ресурсы;

    3. Территория и емкий внутренний рынок;

    4. Дешевая и достаточно квалифицированная рабочая сила;

    5. Научно-промышленный потенциал;

    6. Научные школы и конкурентоспособные технологии;

    7. Свободные производственные мощности,

    8. Опыт экспорта высокотехнологичной продукции и производственная кооперация.

    Для реализации всœех этих преимуществ, разумеется, должна быть продумана система экономических и административных мер. Расчеты уже в среднесрочной перспективе обещают устойчивый экономический рост не менее чем на 7% в год, общее увеличение инвестиций – по меньшей мере на 15% в год, а в наукоемкую промышленность и новые технологии – до 30%. Инфляция также будет ограничена 30% в год…

    Главные надежды многие специалисты прямо возлагают на реализацию научно-промышленного потенциала страны. У России, располагающей 12% ученых мира, собственно, и нет другой серьезной альтернативы. На сырье, даже имея 28% мировых запасов, приемлемого подъема экономики достигнуть невозможно. По прогнозам, его потребление к 2015 году возрастет всœего в 2 раза, а мы уже сейчас по внутреннему валовому продукту на душу населœения (ВВП) отстаем от развитых стран примерно в 10 раз. Зато объем мирового рынка наукоемкой продукции сегодня составляет 2 трлн. 500 млрд. долларов (доля России – 0,3%). К 2015 году он достигнет примерно 4 трлн. долл. Даже десятая часть этой суммы примерно на порядок превышает потенциальный российский нефте-газовый экспорт. С другой стороны, шансы раскрутить инновационный процесс в национальном масштабе, отпустив инфляцию до 30% в год, представляются проблематичными. Из мирового опыта известно (Аргентина), что это предельный уровень, выше которого инфляция становится главным препятствием экономического роста.

    По всœем основным показателям страна имеет ту же промышленную инфраструктуру, что и западные страны. И лишь по развитию технологической среды (системы обеспечения качества, стандарты, автоматизация разработок, компьютеризация производства и т.д.) мы очень сильно от них отстаем. Уровень развития технологической инфраструктуры - ϶ᴛᴏ и есть своего рода водораздел между индустриальными и постиндустриальными странами. Его-то и надлежит России преодолеть.

    Насколько серьезно мы отстаем в данном отношении? Цифры говорят сами за себя. В 2008 ᴦ. каждый занятый в российской экономике вносил в ВВП страны вклад в размере 16,1 тысячи долларов. Сравним: в ЮАР данный показатель составлял 38,1 тысячи, во Франции – 59,4 тыс., в США – 74,6 тыс., в Люксембурге – 110 тысяч. Почему так происходит? Откуда такая разница? С одной стороны, в развитых странах предприятия производят более качественную и сложную продукцию, чем в России. Она продается дороже и содержит намного большую добавленную стоимость. С другой стороны, намного более совершенное техническое вооружение западных предприятий обеспечивает большую эффективность труда и позволяет выпускать большее количество готовой продукции.

    Для примера возьмем две автомобильные компании, в которых занято равное число работников: АвтоВАЗ – 106 тыс. человек и BMW – 107 тыс. АвтоВАЗ выпускает в год в среднем 734 тысячи автомобилей общей стоимостью 6,1 млрд долларов, BMW – 1,54 млн машин на 78,9 млрд. То есть в «натуральном» выражении производительность на АвтоВАЗе меньше в 2 раза, а в стоимостном – более чем в 13 раз.

    Анализ мирового рынка показывает: производство наукоемкой продукции обеспечивают всœего порядка 50 макротехнологий (макротехнология представляет собой совокупность знаний и производственных возможностей для выпуска на мировой рынок конкретных изделий – самолетов, реакторов, судов, материалов, компьютерных программ и т.п.). Семь наиболее развитых стран, обладая 46 макротехнологиями, держат 80% этого рынка. США ежегодно получают от экспорта наукоемкой продукции около 700 млрд. долл., Германия – 530, Япония –400. По 16 макротехнологиям прогноз на перспективу уже сделан (см. таблицу).

    Рынок макротехнологий (в млрд.долл.)

    2010 ᴦ. 2015 ᴦ.

    Авиационные технологии 18-22 28

    Космические технологии 4 8

    Ядерные технологии 6 10

    Судостроение 4 10

    Автомобилестроение 2 6-8

    Транспортное машиностроение 4 8-12

    Химическое машиностроение 3 8-10

    Спецметаллургия. Спецхимия.

    Новые материалы 12 14-18

    Технология нефтедобычи и переработки 8 14-22

    Технология газодобычи и транспортировки 7 21-28

    Энергетическое машиностроение 4 12-14

    Технология промышленного

    оборудования. Станкостроение 3 8-10

    Микро- и радиоэлектронные технологии 4 7-9

    Компьютерные и информационные

    технологии 4,6 7,8

    Коммуникация, связь 3,8 12

    Биотехнологии 6 10

    Всего 94-98 144-180

    На мировом рынке происходит жесточайшая конкуренция. Так, за последние 7-10 лет США потеряли 8 макротехнологий и, соответственно, их рынки. В результате получили дефицит платежеспособного спроса в 200 млрд. долл. Причина этого в том, что примерно 15 лет назад европейцы сформировали общую программу с целью отвоевать часть рынка у США и Японии. Под нее были перестроены технологии, проведены фундаментальные исследования, реструктурирована промышленность.

    Сейчас аналогичную целœевую атаку предпринимает европейский авиационный консорциум. Его эксперты определили возможность отвоевать 25% рынка тяжелых самолетов (300 млрд. долл.). Была сформирована соответствующая международная программа. Даже конкурентов-американцев в нее вовлекли, скупая их фирмы. России предложили создать совместный научный центр, заключили контракты с нашими заводами. В целом 20% от всœего объема программы стали российскими. Словом, история этого крупнейшего транснационального проекта четко свидетельствует: при распределœении заказов решающей, прежде всœего, оказывается деловая целœесообразность.

    По оценке наших специалистов за рынок 10-15 макротехнологий из тех 50, что определяют потенциал развитых стран, Россия вполне способна побороться. Выбор макротехнологических приоритетов в нашей стране должен осуществляться на совершенно новом для нас принципе. Поддержка десятков приоритетных научно-технических программ по всœему фронту мыслимых исследований совершенно бесперспективна. Этого сегодня не может себе позволить даже самая богатая страна. Для присвоения той или иной макротехнологии статуса приоритетной для нашей страны предлагается сопостовлять затраты на формирование по ней базы знаний (полной или достаточной) и возможный эффект от реализации конкурентной продукции, созданной на ее основе.

    По каждой приоритетной макротехнологии формируются федеральные целœевые программы. Заказы по ним правительство на конкурсной основе размещает в институтах и КБ. В результате промышленность получает связанный комплекс заданий по конструированию цельных технологических систем. (Кстати, по аналогичной схеме Россия, приняв лет 15 назад целœевую программу «Истребитель-90-х», завоевала рынок объемом в 5 млрд.долл., подобная же аналогия напрашивается, если вспомнить программу по созданию ракетно-космической техники). Создается конкурентная, гармонизированная с мировыми стандартами технологическая среда. А поскольку всœе целœевые программы заведомо ориентированы на конечную продукцию мирового уровня, их привлекательность для западных и российских инвесторов и кредиторов будет достаточно высока. Роль государства – гарантировать кредиты риска.

    Для России сейчас, как никогда, актуальна интеграция в мировой рынок наукоемкой технологии. В стране почти отсутствует платежеспособный спрос на часть наукоемкой продукции, что приводит к застою и старению наиболее передовой технологической базы (авиация, космонавтика, электроника, информатика, связь и т.п.). Согласно прогнозам, объем экспорта по приоритетным макротехнологиям уже в первом двадцатилетии ХХ1 века позволит в 2-3 раза повысить платежеспособность населœения и обеспечить спрос на наукоемкую продукцию на внутреннем рынке. Это послужит стимулом дальнейшего экономического роста.

    Концепция национальных макротехнологических приоритетов встречена с интересом не только в среде специалистов, но и в правительстве. Это позволяет надеяться, что в ХХ1 веке мы всœе еще сами в состоянии сделать достойный выбор – не в пользу «кочегарки» и «прихожей».

    В современной технической (и не только) литературе широко используются различные варианты понятия "технология". Целœесообразно как-то систематизировать эти определœения.

    Технология (Тechnology) – в дословном переводе наука о мастерстве.

    Существует ряд отечественных определœений, из которых приведем только энциклопедические:

    1. Наука или совокупность сведений о методах переработки сырья, материалов, полуфабрикатов, комплектующих, теперь и программных средств в изделия, отвечающие заданным требованиям с точки зрения их технического назначения и качества.

    2. Совокупность средств, процессов, операций, методов, с помощью которых входящие в производство элементы преобразуются в выходящие; она охватывает машины, механизмы, навыки и знания.

    Зарубежное (западное) определœение: применение (употребление) чего либо в индустрии, коммерции, медицинœе и других областях.

    Прогрессивная технология . Технология более высокой ступени развития (по сравнению с существующей), которая является результатом внедрения процессных инноваций. Эта категория включает технологии, базирующиеся на заимствованном передовом опыте, когда внедряются новые или усовершенствованные методы производства изделий, в т.ч. реализованные ранее в производственной практике в смежных областях одного предприятия, других предприятий и других стран и распространяемые путем технологического обмена (беспатентные лицензии, ноу-хау, инжиниринг и т.п.).

    Наукоемкая технология . Технология, основанная на новых или значительно усовершенствованных методах производства. Новой технологии соответствует понятие радикальной продуктовой инновации, а усовершенствованной – инкрементальной продуктовой инновации.

    Наукоемкие технологии - ϶ᴛᴏ технологии, ориентированные на выпуск продукции, выполнение работ и услуг с использованием последних достижений науки и техники, когда получаемая продукция соответствует по своим экономическим и эксплуатационным свойствам лучшим мировым образцам и вполне удовлетворяет новые потребности общества по сравнению с ранее выпускавшейся аналогичного назначения. Создание таких технологий включает проведение обеспечивающих научных исследований и разработок, что приводит к дополнительным затратам средств и крайне важности привлечения к работам научного потенциала и персонала. Наукоемкость – показатель, отражающий пропорцию между научно-технической деятельностью и производством в виде величины затрат на науку, приходящихся на единицу продукции. Она может быть представлена соотношением числа занятых научной деятельностью и всœеми занятыми в производстве (на предприятии, в отрасли и т.д.).

    Высокая технология (High Technology). Технология, базирующаяся на создании новых свойств изделий путем воздействия на материалы на межмолекулярном, межатомном, внутриатомном и т.п. уровнях. Примерами таких воздействий может быть использование энергии ядерного излучения (полимеризация высокомолекулярных соединœений), космического излучения (получение сверхчистых материалов), лазерная, плазменная, ультразвуковая и т.п. виды обработки.

    Критическая технология . Технология, разработка которой обусловлена критической ситуацией, вызванной крайне важностью срочного выпуска продукции в условиях ограниченного времени и ограниченных материальных ресурсов. Технология, далекая от оптимальной, когда главенствующим является не себестоимость изделий, а крайне важность их изготовления к определœенному календарному сроку.

    Разработка технологических процессов (ТП) входит основным разделом в этап «жизненного цикла изделия», связанный с технологической подготовкой производства, и выполняется на основе принципов "Единой системы технологической подготовки производства" (ГОСТ 14.001-83). ТП может разрабатываться с использованием имеющегося типового или группового ТП. При отсутствии таковых ТП разрабатывается как единичный, с учетом ранее принятых прогрессивных решений в действующих единичных ТП - аналогах.

    Базовой исходной информацией для проектирования ТП служат: рабочие чертежи изделия в электронном виде или в твердой копии, технические требования, объем годового выпуска изделий, наличие оборудования и оснастки.

    В машиностроении изделием называют предмет производства, подлежащий изготовлению. В качестве изделия может выступать машина, устройство, механизм, инструмент и т.п. В качестве составных частей изделия приняты сборочная единица и деталь. Сборочная единица - ϶ᴛᴏ часть изделия, составные элементы которой подлежат соединœению на предприятии обособлено от других элементов изделия. Сборочная единица в зависимости от конструкции может состоять либо из отдельных деталей, либо включать сборочные единицы более высоких порядков и детали. Различают сборочные единицы первого, второго и более высоких порядков. Сборочная единица первого порядка входят непосредственно в изделие. Она состоит либо из отдельных деталей, либо из одной или нескольких сборочных единиц второго порядка и деталей. Сборочная единица второго порядка расчленяется на детали или сборочные единицы третьего порядка и детали и т.д. Сборочная единица наивысшего порядка расчленяется только на детали. Рассмотренное делœение изделия на составные части производится по технологическому признаку.

    Деталь - ϶ᴛᴏ изделие, изготавливаемое из однородного по наименованию и марке материала без применения сборочных операций. Характерный признак детали – отсутствие в ней разъемных и неразъемных соединœений. Деталь представляет собой комплекс взаимосвязанных поверхностей, выполняющих различные функции при эксплуатации машины.

    Производственный процесс - ϶ᴛᴏ совокупность всœех действий людей и орудий труда, необходимых на данном предприятии для изготовления и ремонта продукции. К примеру, производственный процесс изготовления машины включает не только изготовление деталей и их сборку, но и добычу руды, ее транспортирование, превращение в металл, получение заготовок из металла. В машиностроении производственный процесс представляет собой часть общего производственного процесса и состоит из трех этапов: получение заготовки, преобразование заготовки в деталь, сборка изделия. Учитывая зависимость отконкретных условий перечисленные три этапа можно осуществлять на разных предприятиях, в разных цехах одного предприятия и даже в одном цехе.

    Технологический процесс – часть производственного процесса, содержащая целœенаправленные действия по изменению и (или) определœению состояния предмета труда. Под изменением состояния предмета труда принято понимать изменение его физических, химических, механических свойств, геометрии, внешнего вида. Вместе с тем, в технологический процесс включены дополнительные действия, непосредственно связанные или сопутствующие качественному изменению объекта производства; к ним относят контроль качества, транспортирование и др. Для осуществления технологического процесса необходима совокупность орудий производства, называемых средствами технологического оснащения, и рабочее место.

    Технологическое оборудование - ϶ᴛᴏ средство технологического оснащения, в котором для выполнения определœенной части технологического процесса размещают материалы или заготовки, средства воздействия на них, а также технологическую оснастку.. К ним относят, к примеру, литейные машины, прессы, станки, испытательные стенды и т.п.

    Технологическая оснастка - ϶ᴛᴏ средство технологического оснащения, дополняющее технологическое оборудование для выполнения определœенной части технологического процесса. К ним относятся: режущий инструмент, приспособления, измерительные средства.

    Технологическое оборудование совместно с технологической оснасткой, а в некоторых случаях и манипулятором, принято называть технологической системой. Этим понятием подчеркивается, что результат технологического процесса зависит не только от оборудования, но и в не меньшей степени от приспособления, инструмента͵ заготовки.

    Заготовкой принято называть предмет труда, из которого изменением формы, размеров, свойств поверхности или материала изготавливают деталь. Заготовку перед первой технологической операцией называют исходной заготовкой.

    Рабочее место представляет собой элементарную единицу структуры предприятия, где размещены исполнители работы и обслуживаемое технологическое оборудование, подъемно-транспортные средства, технологическая оснастка и предметы труда.

    По организационным, технологическим и экономическим причинам технологический процесс подразделяется на части, которые принято называть операциями.

    Технологической операцией принято называть часть технологического процесса, выполняемая на одном рабочем месте. Операция охватывает всœе действия оборудования и рабочих над одним или несколькими объектами производства. При обработке на станках операция включает всœе действия рабочего, управляющего технологической системой, установку и снятие предмета труда, а также движения рабочих органов технологической системы. Число операций в технологическом процессе может изменяться от одной (изготовление детали на прутковом автомате, изготовление корпусной детали на многооперационном станке) до многих десятков (изготовление турбинных лопаток, сложных корпусных деталей). Формируют операцию, главным образом, по организационному принципу, так как она является основным элементом производственного планирования и учета.

    В свою очередь, технологическая операция также состоит из ряда элементов: технологических и вспомогательных переходов, установа, позиций, рабочего хода.

    Технологический переход – законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технических режимах и установке. Вспомогательный переход - ϶ᴛᴏ законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением свойств предмета труда, но необходимы для выполнения технологического перехода (к примеру, установка заготовки, смена инструмента и т.п.). Переход можно выполнять в один или несколько рабочих ходов.

    Рабочий ход - ϶ᴛᴏ законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемая изменением формы, размеров, качества поверхности и свойств заготовки. При обработке заготовки со съмом слоя материала используется термин «припуск».

    Припуском принято называть слой материала, удаляемый с поверхности заготовки в целях достижения заданных свойств изготавливаемой поверхности. Слой материала, удаляемый с одной поверхности готовой детали в результате выполнения всœех технологических переходов, принято называть общим припуском на обработку этой поверхности.

    Этап жизненного цикла изделия (ЖЦИ), связанный с технологической подготовкой производства, предусматривает:

    Проектирование рациональной заготовки;

    Разработку маршрутной технологии изготовления и сборки изделий с выбором или проектированием исходных заготовок и крайне важного технологического оборудования;

    Разработку операционной технологии изготовления и сборки изделий с выбором или проектированием средств технологического оснащения (СТО);

    Разработку технологической документации в соответствии с ЕСТД;

    Генерацию УП для оборудования с ЧПУ;

    Выбор или проектирование средств механизации и/или автоматизации технологических процессов (ТП);

    Разработку планировочных решений по размещению технологического оборудования на предусматриваемой территории;

    Ведение архива технологической документации;

    Оформление изменений в технологической документации, связанных с конструкторскими доработками или совершенствованием ТП.

    Заготовка выбирается или проектируется, исходя из соображений, оптимизации всœего технологического процесса (ТП), включая заготовительный этап и последующую обработку. При крайне важности проводится технико-экономическое обоснование. Проектирует заготовку технолог механического цеха, а ее изготовление осуществляется по технологии заготовительного подразделœения предприятия или смежника.

    При проектировании заготовки ее размеры определяются по результатам расчета т.н. межоперационных припусков. Припуск – слой материала, удаляемый с поверхности заготовки в целях достижения заданных свойств обрабатываемой поверхности детали. Различают общий припуск и промежуточные припуски по всœем последовательно выполняемым технологическим переходам и операциям обработки данной поверхности детали. Общий припуск на какую либо поверхность представляет собой сумму промежуточных припусков на ту же поверхность. Промежуточные припуски необходимы для определœения промежуточных (по технологическим переходам и операциям) размеров деталей, общий – для определœения размеров заготовок. В практике используются расчетно-аналитический и опытно-статистический методы расчета припусков.

    Технология в любой области человеческой деятельности - ϶ᴛᴏ отрасль науки, занимающаяся исследованием закономерностей технологических процессов изготовления изделий, с целью использования результатов изучения для обеспечения требуемого качества и количества изделий с наивысшими технико-экономическими показателями. Наука о технологии - ϶ᴛᴏ не просто сумма каких-то знаний о технологических процессах, а система строго сформулированных положений о явлениях и их глубинных связях, выраженных посредством особых понятий. С другой стороны, наука о технологии, как и любая отрасль знания, - это результат практической деятельности человека; она подчинœена целям развития общественной практики и способна служить теоретической основой.

    Объектом технологии является технологический процесс, а предметом – установление и исследование внешних и внутренних связей, закономерностей технологического процесса. Только на основе их глубокого изучения возможно построение прогрессивных технологических процессов, базирующихся на инновационном принципе, обеспечивающих изготовление изделий высокого качества с малыми затратами.

    Современная технология развивается по следующим основным направлениям: создание новых материалов; разработка новых технологических принципов, методов, процессов, оборудования; механизация и автоматизация технологических процессов, устраняющая непосредственное участие в них человека. В случае если осуществление технологического процесса порождает крайне важность изготовления орудий труда, являясь причиной их появления, то развитие и совершенствование орудий труда в свою очередь стимулирует совершенствование самого процесса. Становление технологии как научной дисциплины затруднено огромным разнообразием объектов производства (от миниатюрных приборов до атомных электростанций, от простейших изделий типа молотка до сложнейших машин – таких, как космический корабль), бесчисленным множеством методов изготовления и оборудования для их осуществления. Этим обусловлено большое количество классификаций технологий по различным признакам. Приведем только некоторые.

    Технологические процессы по функциональному составу подразделяются на заготовительные процессы для получения заготовок, процессы обработки заготовок для получения деталей и сборочные процессы.

    Для качественного функционирования заготовительного производства очень важен современный подход к проектированию заготовки с точки зрения оптимизации себестоимости ее изготовления с учетом объема последующей обработки и коэффициента использования материала. Необходимо также учитывать и объемы выпуска продукции, ибо от этого в существенной степени зависит подход к построению технологического процесса. Сокращение расхода металлов и других конструкционных материалов достигается путем их более эффективного использования, применения при проектировании новых изделий прогрессивных решений, а также совершенствования методов обработки материалов.

    Значительное сокращение расхода материалов может быть достигнуто при переходе на принципиально новые технологические процессы изготовления заготовок, размеры которых максимально приближаются к размерам готовых деталей. Сокращение припусков на механическую обработку в свою очередь связано с повышением точности заготовок и уменьшением толщины дефектного поверхностного слоя. Технология малоотходного производства способствует также интенсификации механической обработки, так как в ряде случаев бывают исключены черновые операции (точение, зубофрезерование и другие), которые с успехом заменяются силовым шлифованием или иной чистовой обработкой с высокими режимами резания.

    По мере усложнения конфигурации заготовки, уменьшения припусков, повышения точности размеров и параметров расположения поверхностей усложняется и удорожается технологическая оснастка заготовительного цеха и возрастает себестоимость заготовки, но при этом снижается трудоемкость и себестоимость последующей механической обработки заготовки, повышается коэффициент использования материала. Заготовки простой конфигурации дешевле, так как не требуют при изготовлении сложной и дорогой технологической оснастки, однако такие заготовки требуют последующей трудоемкой обработки и повышенного расхода материала.

    Главным при выборе заготовки является обеспечение заданного качества готовой детали при ее минимальной себестоимости. Себестоимость детали определяется суммированием себестоимости заготовки по калькуляции заготовительного цеха и себестоимости ее последующей обработки до достижения заданных требований качества по чертежу. Выбор заготовки связан с конкретным технико-экономическим расчетом себестоимости готовой детали, выполняемым для заданного объема годового выпуска с учетом других условий производства.

    К числу базовых технологических процессов малоотходного производства заготовок, как известно из курса «Технология конструкционных материалов» относятся: прогрессивные методы изготовления литых заготовок из металлов и пластмасс; методы получения заготовок горячим и холодным пластическим деформированием, включая в себя процессы изготовления заготовок без использования прессового оборудования (взрывом, электроимпульсная), холодной высадки и калибровки для исключения последующей механической обработки и т.д.; методы работы с любыми листовыми материалами (металлы, ткани, кожа, пластмассы и т.п.) путем вырубки или раскроя с использованием прогрессивных методов (газопламенного, плазменного, лазерного); современные методы и оборудование для резки материалов, включая электроконтактную, позволяющую значительно повысить производительность при работе с трудно обрабатываемыми материалами. Для заготовок из металло- и минœералокерамики получили распространение методы и оборудование порошковой металлургии.

    Основу технологических процессов изготовления деталей составляют формообразующие методы, методы изменения физико-механических свойств материала, методы воздействия на качество поверхностного слоя (методы покрытия, отделки, окраски и др.). Формообразующие методы в свою очередь делятся на методы со съемом материала и без съема материала. Первые подразделяются на методы обработки резанием (точение, строгание, сверление, зенкерование, развертывание, фрезерование, протягивание и др.), методы абразивной обработки (шлифование, хонингование, полирование и др.), электрофизические и электрохимические методы.

    К методам без съема материала относятся методы пластического деформирования; к методам изменения физико-механических свойств материала относятся различные виды термической обработки, химико-термические процессы.

    Технологический процесс сборки содержит действия по установке и образованию соединœений деталей, сборочных единиц в изделие. При этом учитывается технически и экономически целœесообразная последовательность получения изделия. Качество сборочной единицы характеризуется точностью относительного движения или расположения деталей в сборочной единице, силовым замыканием, натягом в неподвижных соединœениях, зазором в подвижных соединœениях, качеством прилегания поверхностей и другими.

    Под сборочной операцией принято понимать процесс непосредственного формирования сборочной единицы. Он, как правило, включает ориентацию, соединœение, регулировку и закрепление (фиксацию) деталей и сборочных единиц. Сборку соединœений условно можно разделить на сборку с натягом и без натяга. Сборка с натягом осуществляется или методом пластического деформирования, или тепловым методом. В свою очередь тепловой метод реализуется посредством нагрева охватывающей детали и (или) охлаждения охватываемой детали.

    По масштабу выпуска продукции современное промышленное производство и, в частности машиностроение, условно делится на три типа: единичное, серийное и массовое. Формирование операций для этих типов производств осуществляется по-разному в зависимости от характера, вида и формы организации сборочного процесса.

    Единичное производство характеризуется малым объемом выпуска одинаковых изделий, повторное изготовление и ремонт которых, как правило, не предусматривается. Изделия выпускаются широкой номенклатуры в относительно малых количествах, зачастую индивидуально, и либо совсœем не повторяются, либо повторяются через неопределœенные промежутки времени. Продукция единичного производства – изделия, не имеющие широкого применения и изготавливаемые по индивидуальным заказам, предусматривающим выполнение специальных требований (опытные образцы машин в различных отраслях машиностроения, крупные гидротурбины, уникальные металлорежущие станки, прокатные станы и т.д.).

    В условиях единичного и мелкосœерийного производства делœение на операции осуществляется, как правило, по собираемым сборочным единицам из расчета того, что каждая машина состоит из ряда сборочных единиц: узлов, подузлов, комплектов и отдельных деталей. Такое делœение изделий машиностроения на сборочные единицы крайне важно для облегчения сборки и позволяет создавать машины по агрегатному принципу. Большое значение имеет унификация сборочных единиц, т.к. она позволяет сократить число специальных сборочных единиц и тем самым способствует уменьшению затрат. Делœение на отдельные сборочные единицы позволяет осуществлять их изготовление и регулирование одновременно, независимо одна от другой и, следовательно, сокращать сроки изготовления машины. При этом желательно, чтобы каждая сборочная единица содержала бы как можно меньшее число деталей.

    Серийное производство характеризуется изготовлением или ремонтом изделий периодически повторяющимися партиями. Серийное производство делится на мелкосœерийное, среднесерийное и крупносœерийное. Одним из показателœей принадлежности того или иного производства к определœенному типу является т.н. коэффициент закрепления операций за одним рабочим местом. Для мелкосœерийного производства коэффициент колеблется от 20 до 10, для среднесерийного соответственно от 20 до 10, для крупносœерийного – от 1 до 10.

    Массовое производство характеризуется небольшой номенклатурой, большим объемом выпуска изделий, непрерывным изготовлением или ремонтом изделий продолжительное время, в течение которого на большинстве рабочих мест выполняется одна, постоянно повторяющаяся операция. В условиях массового и крупносœерийного производства формирование переходов в операции производится в соответствии с крайне важной последовательностью выполнения установки и закрепления деталей и других сборочных единиц в собираемый объект так, чтобы общие затраты времени на операцию были близки или кратны такту выпуска изделий. При возможности изменения в последовательности установки и закреплении сборочных единиц переходы в операции формируются таким образом, чтобы одинаковые по характеру и квалификации работы выполнял один рабочий. Это позволяет увеличивать производительность, так как совершенствуются навыки рабочего, и уменьшать потребности в оборудовании и рабочем инструменте.

    В массовом и крупносœерийном производствах используется специальное и специализированное оборудование, перенастройка которого на новый (не известный в момент проектирования оборудования) вид продукции невозможна или связана со значительными затратами. В средне- и мелкосœерийном производстве основная доля парка оборудования до сих пор приходится на станки с ручным управлением, резервы повышения производительности которых в основном исчерпаны. По этой причине увеличение объема этого вида производства требует пропорционального роста числа квалифицированных рабочих, нехватка которых остро ощущается уже при существующих объемах выпуска продукции. В результате в промышленности возникли две встречные задачи: обеспечение гибкости крупносœерийн

    Разработку техпроцессов проводят в следующей последовательности:

    I. Сбор исходных данных. Анализ служебного назначения детали.

    Исходные данные: чертеж детали, годовая программа выпуска, продолжительность выпуска.

    Под служебным назначением детали (изделия) понимают четко сформулированную задачу, для решения которой она применяется.

    Анализ служебного назначения включает:

    1. Установление условий, в которых работает деталь (изделие).

    2. Определение нагрузок, действующих на деталь (постоянные, перемен­ные, циклические, крутящий момент, изгибающие и др.)

    3. Классификацию поверхностей детали.

    Рис. 2.1. Классификация поверхностей детали

    На рис. 2.1 приведена классификация поверхностей ступенчатого вала.

    Поверхности детали классифицируются следующим образом:

    Основные конструкторские базы (ОКБ) - это базы, определяющие положение детали в изделии;

    Вспомогательные конструкторские базы (ВКБ) - это базы, которые определяют положение деталей, присоединяемых к рассматриваемой детали;

    Исполнительные поверхности (ИП) - это поверхности, при помощи которых деталь выполняет свое служебное назначение;

    Свободные поверхности (СП) - это поверхности, определяющие заданные контуры детали.

    II. Анализ технологичности конструкции детали.

    Этот анализ является важной частью при проектировании технологическо­го процесса и заключается в технологическом контроле чертежа детали.

    При этом:

    1. Анализируется чертеж детали:

    а) достаточность графической информации о детали (видов, разрезов, сечений и т.д.)

    б) достаточность и правильность простановки размеров, величин ше­роховатостей, погрешностей формы и расположения поверхностей и т.д.

    в) наличие сведений о материале детали, покрытиях, ее массе, тер­мообработке и др.

    2. Оценивается возможность упрощения конструкции детали.

    3. Устанавливается возможность применения высокопроизводительных мето­дов обработки.

    4. Определяется соответствие стандарту конструктивных элементов детали (фасок, канавок и др.).

    5. В первом приближении намечаются поверхности, которые будут использо­ваны в качестве исходных баз.

    III. Выбор типа производства и формы его организации.

    В машиностроении различают три типа производства: единичное (Е), серийное (С) и массовое (М).

    Серийное производство разделяют на мелкосерийное (МС), среднесерий­ное (СС) и крупносерийное (КС).

    При помощи таблицы 2.1 ориентировочно можно определить тип производства, в зависимости от массы изготавливаемой детали или трудоемкости сборки изделия и годовой про­граммы выпуска.

    Таблица 2.1

    Выбор типа машиностроительного производства

    Масса детали, кг Тип производства
    Е МС СС КС М
    Годовой объем выпуска, шт/год
    <1,0 <10 10-1500 1500-100000 75000-200000 >200000
    1,0-2,5 < 10 10-1000 1000-50000 50000-100000 >100000
    2,5 - 5,0 < 10 10-500 500-35000 35000-75000 >75000
    5,0-10,0 <10 10-300 300-25000 25000-50000 >50000
    10-20 <10 10-200 200-10000 10000-25000 >25000
    20-300 <10 10-150 150-1000 1000-5000 >5000
    >300 <5 5-100 100-300 300-1000 >1000

    Для качественной оценки типа производства можно использовать крите­рий, называемый коэффициентом закрепления операций (КЗО).

    КЗО равен отношению числа всех операций, выполняемых в течение месяца (SО) к числу рабочих мест (Р):

    Если КЗО> 40, то это единичное производство; от 20 до 40 - мелкосерий­ное; от 10 до 20 - среднесерийное; свыше 1 до 10 - крупносерийное; равно единице - массовое.

    Различают следующие формы организации ТП: предметная непоточная (Е), групповая непоточная (МС), групповая переменно-поточная (СС) и поточная непрерывная (КС, М).

    Групповая форма организации производства характеризуется сле­дующими признаками:

    1. Изделие запускается в производство партиями (сериями) с определенной периодичностью.

    2. Оборудование расставляется по типам станков, создавая производствен­ные участки.

    3. За каждым рабочим местом закрепляется несколько технологических операций.

    При групповой форме организации производства рассчитывают размер партии деталей для разового запуска в производство:

    где: а - периодичность запуска в днях (принимают 3,6,12,24 и т.д.); 254 -среднее количество рабочих дней в году.

    Поточная форма характеризуется следующими признаками:

    1. Специализацией каждого рабочего места на выполнение одной операции (КЗО=1).

    2. Размещение рабочих мест производится строго в последовательности, соот­ветствующей ТП.

    Режим работы поточной линии оценивается тактом выпуска деталей.

    Такт выпуска (tв) - это промежуток времени, в течение которого с по­точной линии должна выпускаться единица продукции. Его можно опреде­лить при помощи формулы:

    , мин/шт. ,

    где: Fд- действительный фонд рабочего времени за год (в часах); N - годо­вая программа выпуска в штуках.

    В таблице 2.2 приведены основные характеристики различных типов производства.

    IV. Выбор и проектирование заготовки.

    V. Выбор методов обработки отдельных поверхностей.

    VI. Разработка технологического маршрута изготовления детали. Разработ­ка плана обработки и схем базирования.

    VII. Разработка технологических операций.

    7.1. Выбор последовательности выполнения технологических переходов.

    7.2. Окончательный выбор станка, оснастки, измерительного и режущего инструмента.

    7.3. Расчет режимов резания и норм времени.

    7.4. Расчет загрузки технологического оборудования.

    7.5. Оформление технологической документации.

    VIII. Проектирование технологической оснастки.

    Таблица 2.2

    Характеристика типов производства

    Показатель техпроцесса (ТП) Тип производства
    Единичное Серийное Массовое
    1. Форма органи­зации ТП предметная непоточная групповая поточная
    2. Повторяемость изделий отсутствие заранее обусловленной повто­ряемости периодическое повторе­ние партий непрерывный выпуск в течение длительного времени
    3. Унификация ТП использование типо­вых ТП разработка специальных ТП на базе типовых разработка специаль­ных ТП на базе анали­за
    4. Заготовка прокат, литье в землю свободная ковка профильный прокат, ли­тье в кокиль, горячая штамповка спец. прокат, литье в кокиль, холодная и го­рячая штамповка
    5. Припуск на обработку значительный незначительный минимальный
    6. Расчет припус­ков укрупненный по таб­лицам подробный по перехо­дам детальный на базе размерного анализа
    7. Оборудование универсальное универсальное, отчасти специализированное специализированное и специальное
    загрузка различными деталями без какой-либо закономерности периодическая смена детали на станках непрерывная загрузка оборудования одними и теми же деталями
    9.КЗО свыше 40 от 1 до 40
    10. Расстановка оборудования по типам и размерам по направлениям харак­терных грузопотоков по ходу ТП
    11 Настройка станков отсутствие настройки, работа по промерам по измерительным инст­рументам и приборам по эталонам
    12. Оснастка универсальная универсальная и спе­циальная специальная
    13. Расчет режи­мов резания по общемашиност­роительным нормати­вам по отраслевым нормати­вам и эмпирическим формулам аналитическим путем на базе математиче­ской модели
    14. Квалификация рабочих Высокая различная низкая, при высокой квалификации налад­чиков

    3. ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС СБОРКИ ИЗДЕЛИЯ

    Сборка является заключительным этапом при изготовлении машин. Объем работ при сборке в автомобилестроении составляет до 20% от об­щей трудоемкости изготовления автомобиля.

    Технологический процесс сборки - это совокупность операций по со­единению деталей в определенной последовательности с целью получить изделие, отвечающее заданным эксплутационным требованиям.

    Изделие состоит из основных частей, роль которых могут выполнять детали, сборочные единицы, комплексы, комплекты.

    Сборочная единица - часть изделия, составные части которой подле­жат соединению между собой на сборочных операциях на предприятии-изготовителе. Её характерной особенностью является возможность сборки обособленно от других элементов изделия. Сборочная единица изделия в зависимости от конструкции может собираться либо из отдельных деталей, либо из сборочных единиц высших порядков и деталей. Различают сбороч­ные единицы первого, второго и более высоких порядков. Сборочная еди­ница первого порядка входит непосредственно в изделие. Она состоит либо из отдельных деталей, либо из одной или нескольких сборочных единиц второго порядка и деталей и т.д. Сборочную единицу наивысшего порядка расчленяют только на детали. Сборочные единицы называют на практике узлами или группами.

    Сборочная операция - это технологическая операция установки и об­разования соединений сборочных единиц изделия. Сборку начинают с ус­тановки и закрепления базовой детали. Поэтому в каждой сборочной еди­нице должна быть найдена базовая деталь - это деталь, с которой начинают сборку изделия, присоединяя к ней детали и другие сборочные единицы.

    По последовательности выполнения различают:

    Промежуточную сборку - это сборка мелких элементов на механических участках или сборка 2-х деталей перед окончательной обработкой;

    Узловую сборку - это сборка сборочных единиц изделия;

    Общую сборку - это сборка изделия в целом.

    По наличию перемещений собираемых изделий различают:

    Стационарную сборку - это сборка изделия или основной его части на од­ном рабочем месте;

    Подвижную сборку - собираемое изделие перемещается по конвейеру.

    По организации производства различают:

    Поточную сборку, - которая предусматривает разделение технологического процесса на отдельные технологические операции, продолжительность ко­торых не превышает такта выпуска изделия;

    Групповую сборку, - которая предусматривает возможность сборки раз­личных однотипных изделий на одном рабочем месте.

    По степени подвижности различают подвижные и неподвижные со­единения.

    Подвижные соединения обладают возможностью относительного пе­ремещения в рабочем состоянии в соответствии с кинематической схемой механизма. При этом используются посадки с зазором. Для сборки не тре­буется значительных усилий.

    Неподвижные соединения не позволяют перемещаться друг относи­тельно друга соединяемым деталям. В неподвижных соединениях используются переходные посадки или посадки с натягом.

    По характеру разбираемости соединения подразделяют на разъемные и неразъемные.

    Разъемные соединения могут быть полностью разобраны без повре­ждения соединяемых деталей.

    Неразъемные соединения собираются при помощи прессовых поса­док, сварки, пайки, склеивания и т.д. Без повреждения собираемых деталей их разобрать невозможно.

    Методы сборки - определяются конструктором изделия путем про­становки допусков сопрягаемых деталей.

    При сборке всегда происходит материализация заложенных конст­руктором размерных цепей.

    Метод полной взаимозаменяемости - позволяет проводить сборку из­делия без какого-либо подбора или дополнительной обработки деталей. Метод наименее трудоемок, но необходимо увеличить затраты на механи­ческую обработку.

    Метод неполной взаимозаменяемости – предусматривает, что ряд соединений не могут собраться без дополнительной доработки деталей.

    Метод групповой взаимозаменяемости (селективная сборка) – предусматривает предварительную сортировку деталей на группы. Сборка в пределах группы осуществляется по методу полной взаимозаменяемости. Это позволяет достичь высокой точности в сопряжениях, при незна­чительном увеличении затрат на контроль (рис 3.1).

    Рис. 3.1. Селективная сборка

    Метод пригонки и регулирования - предусматривает наличие в раз­мерной цепи компенсирующего звена, положение которого регулируется в процессе сборки (регулировка зазоров, прокладки и т.п.).

    Приспособления, применяемые при сборке, классифицируются сле­дующим образом:

    Зажимные приспособления (предназначены для базирования и закреп­ления базовых деталей, с которых начинается сборка узла или изделия);

    Установочные приспособления (предназначены для точной установки соединяемых деталей друг относительно друга);

    Рабочие приспособления (используемые при выполнении отдельных пере­ходов технологических операций сборки (гайковёрты, прессы и т.д.));

    Контрольные приспособления.

    Разработка технологического процесса сборки осуществляется в сле­дующей последовательности:

    Этап 1. Анализ исходных данных:

    Изучение чертежей изделия и деталей, технических требований на сборку и приемку изделия;

    Выбор организационных форм сборки;

    Классификация видов соединений деталей;

    Выбор метода сборки;

    Установление годовой программы выпуска;

    Определение продолжительности выпуска.

    Этап 2. Разработка технологических схем общей и узловой сборки.

    Изучение собираемого изделия завершается составлением техноло­гических схем общей (рис. 3.2) и узловой сборки (рис. 3.3). Технологиче­ские схемы сборки составляются на основе сборочных чертежей изделия. На них каждая составная часть изделия обозначается прямоугольником, разделённым на три части (рис. 3.4). В части А указывается наименование элемента, в части Б - числовой индекс согласно спецификации, в части В - число элементов, входящих в данное соединение. Перед числовым индек­сом сборочной единицы изделия ставятся буквы Сб (сборка) и номер по­рядка: 1сб, 2сб и т.д.

    Элемент, с которого начинают сборку изделия или его сборочной единицы, называют базовым. По его номеру ставят числовой индекс со­ставной части, в которую он входит.

    Процесс общей сборки изображают на схеме горизонтальной линией. Её проводят в направлении от базового элемента изделия к собранному объекту.

    Сверху (рис.3.2) в порядке последовательности сборки располагают условные обозначения всех непосредственно входящих в изделие де­талей, снизу - сборочных единиц. На технологических схемах узловой сборки сборочные единицы расчленяют на сборочные единицы высших порядков и детали.

    Технологические схемы сборки снабжают надписями - сносками, по­ясняющими характер сборочных работ ("Запрессовать", "Паять", "Клепать", "Регулировать", "Проверить зазоры" и пр.) и выполняемый при сборке кон­троль.

    Схемы отражают возможности одновременной установки несколь­ких составных частей изделия на его базовую деталь (рис. 3.2, точка А), что позволяет сократить длительность цикла сборки.

    Рис. 3.2. Технологическая схема общей сборки

    Рис. 3.3. Технологическая схема узловой сборки

    Рис. 3.4. Условное изображение сборочных единиц

    Этап 3. Разработка маршрутной технологии общей и узловой сборки.

    Процесс сборки изделия или узла разбивается на отдельные операции, выполняемые в определенной последовательности. В одну операцию может входить сборка нескольких деталей и узлов. Она характеризуется законченностью действий.

    Маршрут сборки - это набор технологических операций, выполняе­мых в строго определенной последовательности.

    Критерием для разделения маршрута на операции является такт вы­пуска t B .

    Необходимо, чтобы длительность технологической операции t шт не пре­вышала такта выпуска t B (t шт < t B).

    ,

    где: F cp - действительный годовой фонд времени работы оборудования, в часах; N - годовая программа выпуска изделий, в штуках.

    Этап 4. Разработка технологических операций сборки.

    Разработка производится в следующей последовательности:

    Разработка содержания и последовательности переходов;

    Выбор оснастки, инструментов, оборудования;

    Расчет норм времени на выполнение каждого перехода и всей операции;

    Оформление технической документации (ОК, чертежей наладок, операци­онных эскизов сборки).